統計學
出自 MBA智库百科(https://wiki.mbalib.com/)
統計學(statistics)
目錄 |
統計學是應用數學的一個分支,主要通過利用概率論建立數學模型,收集所觀察系統的數據,進行量化的分析、總結,併進而進行推斷和預測,為相關決策提供依據和參考。它被廣泛的應用在各門學科之上,從物理和社會科學到人文科學,甚至被用來工商業及政府的情報決策之上。
統計學主要又分為描述統計學和推斷統計學。給定一組數據,統計學可以摘要並且描述這份數據,這個用法稱作為描述統計學。另外,觀察者以數據的形態建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。另外也有一個叫做數理統計學的學科專門用來討論這門科目背後的理論基礎。
統計學的英文statistics最早是源於現代拉丁文statisticum collegium (國會)以及義大利文 statista (國民或政治家)。 德文Statistik,最早是由Gottfried Achenwall(1749)所使用,代表對國家的資料進行分析的學問,也就是“研究國家的科學”。在十九世紀統計學在廣泛的數據以及資料中探究其意義,並且由John Sinclair引進到英語世界。
統計學是一門很古老的科學,一般認為其學理研究始於古希臘的亞裡斯多德時代,迄今已有兩千三百多年的歷史。它起源於研究社會經濟問題,在兩千多年的發展過程中,統計學至少經歷了"城邦政情","政治算數"和"統計分析科學"三個發展階段。所謂"數理統計"並非獨立於統計學的新學科,確切地說它是統計學在第三個發展階段所形成的所有收集和分析數據的新方法的一個綜合性名詞。概率論是數理統計方法的理論基礎,但是它不屬於統計學的範疇,而屬於數學的範疇。
統計學的發展過程的三個階段
- 第一階段稱之為"城邦政情"(Matters of state)階段
"城邦政情"階段始於古希臘的亞裡斯多德撰寫"城邦政情"或"城邦紀要"。他一共撰寫了一百五十餘種紀要,其內容包括各城邦的歷史,行政,科學,藝術,人口,資源和財富等社會和經濟情況的比較,分析,具有社會科學特點。"城邦政情"式的統計研究延續了一兩千年,直至十七世紀中葉才逐漸被"政治算數"這個名詞所替代,並且很快被演化為"統計學"(Statistics)。統計學依然保留了城邦(state)這個詞根。
- 第二階段稱之為"政治算數"(Politcal arthmetic)階段
與"城邦政情"階段沒有很明顯的分界點,本質的差別也不大。
"政治算數"的特點是統計方法與數學計算和推理方法開始結合。分析社會經濟問題的方式更加註重運用定量分析方法。
1690年英國威廉·配弟出版 (政治算數)一書作為這個階段的起始標誌.
威廉・配弟用數字,重量和尺度將社會經濟現象數量化的方法是近代統計學的重要特征。因此,威廉・配弟的(政治算數)被後來的學者評價為近代統計學的來源,威廉・配弟本人也被評價為近代統計學之父。
配弟在書中使用的數字有三類:
第一類是對社會經濟現象進行統計調查和經驗觀察得到的數字.因為受歷史條件的限制,書中通過嚴格的統計調查得到的數據少,根據經驗得出的數字多;
第二類是運用某種數學方法推算出來的數字。其推算方法可分為三種:
"(1)以已知數或已知量為基礎,循著某種具體關係進行推算的方法;
(2)通過運用數字的理論性推理來進行推算的方法;
(3)以平均數為基礎進行推算的方法";
第三類是為了進行理論性推理而採用的例示性的數字.配弟把這種運用數字和符號進行的推理稱之為"代數的演算法"。從配弟使用數據的方法看,"政治算數"階段的統計學已經比較明顯地體現了"收集和分析數據的科學和藝術"特點,統計實證方法和理論分析方法渾然一體,這種方法即使是現代統計學也依然繼承。
- 第三階段稱之為"統計分析科學"(Science of statistical analysis)階段
在"政治算數"階段出現的統計與數學的結合趨勢逐漸發展形成了"統計分析科學"。
十九世紀末,歐洲大學開設的"國情紀要"或"政治算數"等課程名稱逐漸消失,代之而起的是"統計分析科學"課程.當時的"統計分析科學"課程的內容仍然是分析研究社會經濟問題。
"統計分析科學"課程的出現是現代統計發展階段的開端. 1908年,"學生"氏(William Sleey Gosset的筆名Student)發表了關於t分佈的論文,這是一篇在統計學發展史上劃時代的文章。它創立了小樣本代替大樣本的方法,開創了統計學的新紀元。
現代統計學的代表人物首推比利時統計學家奎特萊(Adolphe Quelet),他將統計分析科學廣泛應用於社會科學,自然科學和工程技術科學領域,因為他深信統計學是可以用於研究任何科學的一般研究方法.
現代統計學的理論基礎概率論始於研究賭博的機遇問題,大約開始於1477年。數學家為瞭解釋支配機遇的一般法則進行了長期的研究,逐漸形成了概率論理論框架。在概率論進一步發展的基礎上,到十九世紀初,數學家們逐漸建立了觀察誤差理論,正態分佈理論和最小平方法則。於是,現代統計方法便有了比較堅實的理論基礎。
為了將統計學應用到科學,工業以及社會問題上,我們由研究母體開始。這可能是一個國家的人民,石頭中的水晶,或者是某家特定工廠所生產的商品。一個母體甚至可能由許多次同樣的觀察程式所組成;由這種資料蒐集所組成的母體我們稱它叫時間序列。
為了實際的理由,我們選擇研究母體的子集代替研究母體的每一筆資料,這個子集稱做樣本。以某種經驗設計實驗所蒐集的樣本叫做資料。資料是統計分析的對象,並且被用做兩種相關的用途:描述和推論。
描述統計學處理有關敘述的問題:資料是否可以被有效的摘要,不論是以數學或是圖片表現,以用來代表母體的性質?基礎的數學描述包括了平均數和標準差。圖像的摘要則包含了許多種的表和圖。
推論統計學被用來將資料中的數據模型化,計算它的機率並且做出對於母體的推論。這個推論可能以對/錯問題的答案所呈現(假設檢定),對於數字特征量的估計(估計),對於未來觀察的預測,關聯性的預測(相關性),或是將關係模型化(回歸)。其他的模型化技術包括變異數分析(ANOVA),時間序列,以及資料採礦。
相關的觀念特別值得被拿出來討論。對於資料集合的統計分析可能顯示兩個變數(母體中的兩種性質)傾向於一起變動,好像它們是相連的一樣。舉例來說,對於人收入和死亡年齡的研究期刊可能會發現窮人比起富人平均來說傾向擁有較短的生命。這兩個變數被稱做相關的。但是實際上,我們不能直接推論這兩個變數中有因果關係;參見相關性推論因果關係(邏輯謬誤)。
如果樣本足以代表母體的,那麼由樣本所做的推論和結論可以被引申到整個母體之上。最大的問題在於決定樣本是否足以代表 整個母體。統計學提供了許多方法來估計和修正樣本和蒐集資料過程中的隨機性(誤差),如同上面所提到的透過經驗所設計的實驗。參見實驗設計。
要瞭解隨機性或是機率必須具備基本的數學觀念。數理統計(通常又叫做統計理論)是應用數學的分支,它使用機率論來分析並且驗證統計的理論基礎。
任何統計方法是有效的只有當這個系統或是所討論的母體滿足方法論的基本假設。誤用統計學可能會導致描述面或是推論面嚴重的錯誤,這個錯誤可能會影響社會政策,醫療實踐以及橋梁或是核能發電計劃結構的可靠性。
即使統計學被正確的應用,結果對於不是專家的人來說可能會難以陳述。舉例來說,統計資料中顯著的改變可能是由樣本的隨機變數所導致,但是這個顯著性可能與大眾的直覺相悖。人們需要一些統計的技巧(或懷疑)以面對每天日常生活中透過引用統計數據所獲得的資訊。
1)測量的尺度
統計學一共有四種測量的尺度或是四種測量的方式。這四種測量(名目,順序,等距,等比)在統計過程中具有不等的實用性 。等比尺度(Ratio measurements)擁有零值及資料間的距離是相等被定義的,等距尺度(Interval measurements)資料間的距離是相等被定義的但是它的零值並非絕對的無而是自行定義的(如智力或溫度的測量)。( Ordinal measurements)順序尺度的意義並非表現在其值而是在其順序之上。名目尺度(Nominal measurements)的測量值則不具量的意義。
2)統計技術
以下列出一些有名的統計檢定方法以及可供驗證實驗數據的程式
- 費雪最小顯著差異法(Fisher's Least Significant Difference test )
- 學生t檢驗(Student's t-test)
- 曼-惠特尼U檢定(Mann-Whitney U)
- 回歸分析(regression analysis)
- 相關性(correlation)
- 皮爾森積矩相關係數(Pearson product-moment correlation coefficient)
- 史匹曼等級相關係數(Spearman's rank correlation coefficient )
- 卡方分配(chi-square )
- 一、18-19世紀——統計學的創立和發展
德國的斯勒茲曾說過:“統計是動態的歷史,歷史是靜態的統計。”可見統計學的產生與發展是和生產的發展、社會的進步緊密相聯的。
(1)統計學的創立時期
統計學的萌芽產生在歐洲。17世紀中葉至18世紀中葉是統計學的創立時期。在這一時期,統計學理論初步形成了一定的學術派別,主要有國勢學派和政治算術學派。
1、國勢學派
國勢學派又稱記述學派,產生於17世紀的德國。由於該學派主要以文字記述國家的顯著事項,故稱記述學派。其主要代表人物是海爾曼·康令和阿亨華爾。康令第一個在德國黑爾姆斯太特大學以“國勢學”為題講授政治活動家應具備的知識。阿亨華爾在哥廷根大學開設“國家學”課程,其主要著作是《近代歐洲各國國勢學綱要》,書中講述“一國或多數國家的顯著事項”,主要用對比分析的方法研究瞭解國家組織、領土、人口、資源財富和國情國力,比較了各國實力的強弱,為德國的君主政體服務。因在外文中“國勢”與“統計”詞義相通,後來正式命名為“統計學”。該學派在進行國勢比較分析中,偏重事物性質的解釋,而不註重數量對比和數量計算,但卻為統計學的發展奠定了經濟理論基礎。但隨著資本主義市場經濟的發展,對事物量的計算和分析顯得越來越重要,該學派後來發生了分裂,分化為圖表學派和比較學派。
2、政治算術學派
政治算術學派產生於19世紀中葉的英國,創始人是威廉·配第(1623-1687),其代表作是他於1676年完成的《政治算術》一書。這裡的“政治”是指政治經濟學,“算術”是指統計方法。在這部書中,他利用實際資料,運用數字、重量和尺度等統計方法對英國、法國和荷蘭三國的國情國力,作了系統的數量對比分析,從而為統計學的形成和發展奠定了方法論基礎。因此馬克思說:“威廉·佩第——政治經濟學之父,在某種程度上也是統計學的創始人。”
政治算術學派的另一個代表人物是約翰·格朗特(1620-1674)。他以1604年倫敦教會每周一次發表的“死亡公報”為研究資料,在 1662年發表了《關於死亡公報的自然和政治觀察》的論著。書中分析了60年來倫敦居民死亡的原因及人口變動的關係,首次提出通過大量觀察,可以發現新生兒性別比例具有穩定性和不同死因的比例等人口規律;並且第一次編製了“生命表”,對死亡率與人口壽命作了分析,從而引起了普遍的關註。他的研究清楚地表明瞭統計學作為國家管理工具的重要作用。
(2)統計學的發展時期
18世紀末至19世紀末是統計學的發展時期。在這時期,各種學派的學術觀點已經形成,並且形成了兩主要學派,即數理統計學派和社會統計學派。
1、數理統計學派
在18世紀,由於概率理論日益成熟,為統計學的發展奠定了基礎。19世紀中葉,把概率論引進統計學而形成數理學派。其奠基人是比利時的阿道夫·凱特勒(1796-1874),其主要著作有:《論人類》、《概率論書簡》、《社會制度》和《社會物理學》等。他主張用研究自然科學的方法研究社會現象,正式把古典概率論引進統計學,使統計學進入一個新的發展階段。由於歷史的局限性,凱特勒在研究過程中混淆了自然現象和本質區別,對犯罪、道德等社會問題,用研究自然現象的觀點和方法作出一些機械的、庸俗化的解釋。但是,他把概率論引入統計學,使統計學在“政治算術”所建立的“算術”方法的基礎上,在準確化道路上大大跨進了一步,為數理統計學的形成與發展奠定了基礎。
2、社會統計學派
社會統計學派產生於19世紀後半葉,創始人是德國經濟學家、統計學家克尼斯(1821-1889),主要代表人物主要有恩格爾(1821- 1896)、梅爾(1841-1925)等人。他們融合了國勢學派與政治算術學派的觀點,沿著凱特勒的“基本統計理論”向前發展,但在學科性質上認為統計學是一門社會科學,是研究社會現象變動原因和規律性的實質性科學,以此同數理統計學派通用方法相對立。社會統計學派在研究對象上認為統計學是研究體而不是個別現象,而且認為由於社會現象的複雜性和整體性,必須地總體進行大量觀察和分析,研究其內在聯繫,才能揭示現象內在規律。這是社會統計學派的“實質性科學”的顯著特點。
社會經濟的發展,要求統計學提供更多的統計方法;社會科學本身也不斷地向細分化和定量化發展,也要求統計學能提供更有效的調查整理、分析資料的方法。因此,社會統計學派也日益重視方法論的研究,出現了從實質性方法論轉化的趨勢。但是,社會統計學派仍然強調在統計研究中必須以事物的質為前提和認識事物質的重要性,這同數理統計學派的計量不計質的方法論性質是有本質區別的。
- 二、20世紀——迅速發展的統計學
20世紀初以來,科學技術迅猛發展,社會發生了巨大變化,統計學進入了快速發展時期。歸納起來有以下幾個方面。
1、由記述統計向推斷統計發展。記述統計是對所搜集的大量數據資料進行加工整理、綜合概括,通過圖示、列表和數字,如編製次數分佈表、繪製直方圖、計算各種特征數等,對資料進行分析和描述。而推斷統計,則是在搜集、整理觀測的樣本數據基礎上,對有關總體作出推斷。其特點是根據帶隨機性的觀測樣本數據以及問題的條件和假定(模型),而對未知事物作出的,以概率形式表述的推斷。目前,西方國家所指的科學統計方法,主要就是指推斷統計來說的。
2、由社會、經濟統計向多分支學科發展。在20世紀以前,統計學的領域主要是人口統計、生命統計、社會統計和經濟統計。隨著社會、經濟和科學技術的發展,到今天,統計的範疇已覆蓋了社會生活的一切領域,幾乎無所不包,成為通用的方法論科學。它被廣泛用於研究社會和自然界的各個方面,併發展成為有著許多分支學科的科學。
3、統計預測和決策科學的發展。傳統的統計是對已經發生和正在發生的事物進行統計,提供統計資料和數據。20世紀30年代以來,特別是第二次世界大戰以來,由於經濟、社會、軍事等方面的客觀需要,統計預測和統計決策科學有了很大發展,使統計走出了傳統的領域而被賦予新的意義和使命。
4、資訊理論、控制論、系統論與統計學的相互滲透和結合,使統計科學進一步得到發展和日趨完善。資訊理論、控制論、系統論在許多基本概念、基本思想、基本方法等方面有著共同之處,三者從不同角度、側面提出瞭解決共同問題的方法和原則。三論的創立和發展,徹底改變了世界的科學圖景和科學家的思維方式,也使統計科學和統計工作從中吸取了營養,拓寬了視野,豐富了內容,出現了新的發展趨勢。
5、計算技術和一系列新技術、新方法在統計領域不斷得到開發和應用。近幾十年間,電腦技術不斷發展,使統計數據的搜集、處理、分析、存貯、傳遞、印製等過程日益現代化,提高了統計工作的效能。電腦技術的發展,日益擴大了傳統的和先進的統計技術的應用領域,促使統計科學和統計工作發生了革命性的變化。如今,電腦科學已經成為統計科學不可分割組成部分。隨著科學技術的發展,統計理論和實踐深度和廣度方面也不斷發展。
6.統計在現代化管理和社會生活中的地位日益重要。隨著社會、經濟和科學技術的發展,統計在現代化國家管理和企業管理中的地位,在社會生活中的地位,越來越重要了。人們的日常生活和一切社會生活都離不開統計。英國統計學家哈斯利特說:“統計方法的應用是這樣普遍,在我們的生活和習慣中,統計的影響是這樣巨大,以致統計的重要性無論怎樣強調也不過分。”甚至有的科學有還把我們的時代叫做“統計時代”。顯然,20世紀統計科學的發展及其未來,已經被賦予了劃時代的意義。
- 三、今天的統計學
在科學技術飛速發展的今天,統計學廣泛吸收和融合相關學科的新理論,不斷開發應用新技術和新方法,深化和豐富了統計學傳統領域的理論與方法,並拓展了新的領域。今天的統計學已展現出強有力的生命力。在我國,社會主義市場經濟體制的逐步建立,實踐發展的需要對統計學提出了新的更多、更高的要求。隨著我國社會主義市場經濟的成長和不斷完善,統計學的潛在功能將得到更充分更完滿的開掘。
第一,對系統性及系統複雜性的認識為統計學的未來發展增加了新的思路。由於社會實踐廣度和深度迅速發展,以及科學技術的高度發展,人們對客觀世界的系統性及系統的複雜性認識也更加全面和深入。隨著科學融合趨勢的興起,統計學的研究觸角已經向新的領域延伸,新興起了探索性數據的統計方法的研究。研究的領域向複雜客觀現象擴展。21世紀統計學研究的重點將由確定性現象和隨機現象轉移到對複雜現象的研究。如模糊現象、突變現象及混沌現象等新的領域。可以這樣說,複雜現象的研究給統計開闢了新的研究領域。
第二,定性與定量相結合的綜合集成法將為統計分析方法的發展提供新的思想。定性與定量相結合的綜合集成方法是錢學森教授於1990年提出的。這一方法的實質就是將科學理論、經驗知識和專家判斷相結合,提出經驗性的假設,再用經驗數據和資料以及模型對它的確實性進行檢測,經過定量計算及反覆對比,最後形成結論。它是研究複雜系統的有效手段,而且在問題的研究過程中處處滲透著統計思想,為統計分析方法的發展提供了新的思維方式。
第三,統計科學與其他科學滲透將為統計學的應用開闢新的領域。現代科學發展已經出現了整體化趨勢,各門學科不斷融合,已經形成一個相互聯繫的統一整體。由於事物之間具有的相互聯繫性,各學科之間研究方法的滲透和轉移已成為現代科學發展的一大趨勢。許多學科取得的新的進展為其他學科發展提供了全新的發展機遇。模糊論、突變論及其他新的邊緣學科的出現為統計學的進一步發展提供了新的科學方法和思想。將一些尖端科學成果引入統計學,使統計學與其交互發展將成為未來統計學發展的趨勢。統計學也將會有一個令人振奮的前景。今天已經有一些先驅者開始將控制論、資訊理論、系統論以及圖論、混沌理論、模糊理論等方法和理論引入統計學,這些新的理論和方法的滲透必將會給統計學的發展產生深遠的影響。
統計學產生於應用,在應用過程中發展壯大。隨著經濟社會的發展、各學科相互融合趨勢的發展和電腦技術的迅速發展,統計學的應用領域、統計理論與分析方法也將不斷發展,在所有領域展現它的生命力和重要作用。
一些學科大量地利用了應用統計學,以至它們自己已經各自獨立成為一門學科。
統計學的分支學科有:
- 統計學史
- 理論統計學
- 統計法學
- 描述統計學
- 推斷統計學
- 經濟統計學
- 科學技術統計學
- 農村經濟調查
- 社會統計學
- 教育統計學
- 文化與體育統計學
- 衛生統計學
- 司法統計學
- 社會福利與社會保障統計學
- 生活質量統計學
- 人口統計學
- 環境與生態統計學
- 自然資源統計學
- 環境統計學
- 生態平衡統計學
- 國際統計學
- 其他
有些科學廣泛的應用統計的方法使得他們擁有各自的統計術語,這些學科包括:
- 農業科學
- 生物統計
- 商用統計
- 資料採礦(應用統計學以及圖形從資料中獲取知識)
- 經濟統計學
- 電機統計
- 統計物理學
- 人口統計
- 心理統計學
- 教育統計學
- 社會統計(包括所有的社會科學﹚
- 文獻統計分析
- 化學與程式分析(所有有關化學的資料分析與化工科學)
- 運動統計學,特別是棒球以及曲棍球
統計對於商業以及工業是一個基本的關鍵。他被用來瞭解與測量系統變異性,程式控制,對資料作出結論,並且完成資料取向的決策。在這些領域統計扮演了一個重要的角色。
本条目由以下用户参与贡献
山林,沙漠之鹰,Angle Roh,Zfj3000,Vulture,Dan,Weiqiongrui,Yixi,czli,HEHE林,连晓雾,可恨密码记不住,Tracy,Mis铭.評論(共9條)
以美國為代表的發達國家,幾乎認為,數理統計學就是統計學,大有吃掉社會統計學的勢頭,實際上這是一個極大的誤區,社會統計學與數理統計學以與2006年以統一了,
現在對統計學的發展方向很迷茫,因為自己不知道以後的從業方向
可往數據挖掘方向發展
可往數據挖掘方向發展
big data的就業方向有哪些呀
以上都是美國數理統計學派的關點,不是國際統計學會的觀點