常模

用手机看条目

出自 MBA智库百科(https://wiki.mbalib.com/)

目錄

什麼是常模

  常模是指一定人群在測驗所測特性上的普遍水平或水平分佈狀況,是一種供比較的標準量數,由標準化樣本測試結果計算而來,即某一標準化樣本的平均數標準差。它是人才測評用於比較和解釋測驗結果時的參照分數標準。測驗分數必須與某種標準比較,才能顯示出它所代表的意義。

  常模可分為組間常模和組內常模兩大類。前者有年級、年齡常模,反映不同群體在測驗上表現的差異。後者有百分等級、標準分數離差智商等常模。

  常模的構成要素為:1、原始分數;2、導出分數;3、對常模團體的有關具體描述。

常模的建立步驟

  ①科學抽樣,從清楚而明確地定義的“特定人群”總體中,抽取到容量足夠大、並確具代表性的被試樣組;

  ②要用擬建立常模的測驗,採用規範化施測手續與方法對標準化樣組(常模組)中的所有被試,施測該測驗,以便恰當而準確地收集到所有這些被試在該測驗上的實際測值;

  ③對收集到的全部資料進行統計分析處理,真正把握被試樣組在該測驗上的普遍水平或水平分佈狀況。

常模的類型

發展常模

  就是根據不同年齡上各種發展水平的人的平均表現(如智力、技能、感覺運動等方面的發展水平)所制定的量表。

  1、發展順序量表:與發育正常的兒童相比,按年齡評定一個兒童的心理髮展水平。

  (1)葛爾塞發展程式量表:按月份顯示發育正常兒童在運動水平、適應性、語言、社會性四個方面的發展水平,以此作為標準,評定個體的發展水平。強調兒童早期行為的發展是有規律的。

  (2)皮亞傑的發展理論——對守恆概念的研究:5歲時才會理解質量守恆;6歲才會掌握重量守恆;7歲時才有容量守恆概念。(守恆:是指二種等量的物體,只要無增無減,無論怎麼組合,它們在質量、重量、長度、數量及容量等方面仍然是相等的。)

  2、智力年齡(個體的智力所達到的年齡水平——智齡):是指一個兒童在年齡量表上所得的分數。

  (1)比內-西蒙智力量表——首先使用智力年齡的概念;

  智齡是年齡量表上度量智力的單位。編製出可區分各年齡兒童的智力水平的測題,這些測題的難度隨年齡而逐漸加大。

  (2)為每個年齡水平都編製一些適當的題目,其中的每個測題是該年齡組大部分兒童都能完成的。以智力年齡(智齡)作為度量智力的單位。

  (3)智力年齡的計算方法:

  範例:每個年齡組各有6個測題,每答對一題增加智齡2個月。先確定基礎年齡(智力量表中全部被通過的那一組測題所代表的年齡)。例如:六歲組的測題全部答對,更高年齡組的測題只有部分答對,或都未通過,則基礎年齡為六歲,再求答對的更高年齡組上的測題數量,每答對一題增加智齡2個月。

  智力年齡=基礎年齡+更高年齡組上通過的測題數量所代表的智齡增長的月數

  3、不分年齡組測題:以標準化樣本中每個年齡組的平均分數作為年齡常模;將個人的原始分數與年齡常摸作比較,計算其智力年齡。

  4、年級量表:將一個學生和同年級學生相比。年級量表的單位通常為10個月間隔(故10個月為一個學年)。

百分位常模

  1、百分等級:

  (1)是應用最廣的表示測驗分數的方法;

  (2)一個測驗分數的百分等級是指在常模樣本中低於該分數的人數百分比;即百分等級指出的是個體在常模團體中所處的位置,百分等級越低,個體所處的位置就越低;

  (3)分類:A.未分組資料的百分位數:計算:PR = 100 -(100R-50)/N R是原始分數排列順序,N是指總人數(樣本的總人數)。B.分組資料的百分等級。

  2、百分點(百分位數):是計算處於某一百分比例的人對應的測驗分數是多少;是分數量表上相對於某一百分等級的分數點,又稱百分位數(PP)根據直線內插法計算(舉例:高考成績):

  (100-百分等級)/(最高分-PP)=(百分等級-1/PP-最低分)

  原始分數和百分等級可互相轉換,由此編製的原始分數與百分等級的對照表,稱為百分位常模。

  3、四分位數和十分位數

  (1)四分位數:將分數量表分成四等份,相當於百分等級的25%、50%和75%三個百分點分成的四段;

  (2)十分位數:將分數量表分為十段:10%、20%等。

標準分數

  1、是將原始分數與平均數的距離以標準差為單位表示出來的量表;

  2、其基本單位是標準差;

  3、常用的標準分數有:z分數、Z分數、T分數、標準九分數、離差智商(IQ)等。

  4、分類:

  (1)線性轉換的標準分數:

  (A)適用於正態(常態)分佈的數據資料;

  (B)z分數為最典型的線性轉換的標準分數;

  (C)z分數:z =(X-M)/SD

  X為任一原始分數,M為樣本平均數,SD為樣本標準差。z分數可以用來表示某一分數與平均數之差是標準差的幾倍。

  (D)轉換後的Z分數:Z=A+Bz

  Z為轉換後的標準分數,A、B為根據需要指定的常數;加上一個常數是為了去掉負值,乘以一個常數是為了使單位變小而去掉小數點;加或乘一個常數並不改變原來分數間的關係。

  (2)非線性轉換的標準分數:

  (A)原始分數不是常態分佈——使之常態化(常態化過程是非線性的);

  (B)常態化過程主要是將原始分數轉化為百分等級,再將百分等級轉化為常態分佈上相應的離均差,並可以表示為任何平均數和標準差。

  (C)計算步驟:

  1、對每個分數值計算累積百分數;

  2、在常態曲線面積中,求出對應的該百分比的z分數;

  所得的z分數可將分佈分成幾部分,稱之為z'分數,以區別線性轉換所求得的z分數。

  與線性導出分數一樣,常態化標準分數也可以被轉化為任何方便的形式,並可用以下表示:

  3、T分數——以50為平均數(即加上一個常數50),以10為標準差(乘以一個常數理10),即: T= 50 +10 z' (平均數為50,標準差為10);

  4、標準九分:其量表是個9級分數量表(平均數為5,標準差為2);

  5、標準十分——平均數為5.5,標準差為1.5;

   標準二十分——平均數為10,標準差為3。

  (使用最廣、影響最大的一種常態化標準分數是離差智商。)

  建立標準分數常模步驟:①從明確界定好的該測驗應該測查的被試總體中,抽取一個容量足夠大的代表性樣組,即建立起常模組(常模團體);

  ②對該代表性樣組按應有規範施測該測驗,獲得代表性樣組中每一被試的測驗分數,即得到常模團體的測驗分數組

  ③求取常模團體測驗分數組的平均數與標準差,按公式求取從-3.000到3.000這一區間上若幹個點的標準分數(Z值)跟測驗原始分數的對照表,就得到了標準分數常模表。

智商及其意義

  若心理年齡高於其生理年齡,則智力較一般兒童高,若心理年齡低於其生理年齡, 則智力較一般兒童低.但在使用中發現,單純用心理年齡來表示智力高低的方法缺乏不同年齡兒童間的可比性

  1.比率智商:IQ=MA/CA*100 ;

  比率智商被定義為心理年齡(MA)與實足年齡(CA)之比.這避免小數,將商數乘以100.如果一個兒童的心理年齡等於實足年齡,他的智商就為100。

  IQ等於100代表正常的或平常的智力,IQ高於100代表發展迅速,低於100代表發育遲緩. 由於個體智力增長是一個由快到慢再到停止的過程,即心理年齡與實足年齡並不同步增長,所以比率智商並不適合於年齡較大的被試。

  2.離差智商

  離差智商是一種以年齡組為樣本計算而得到標準分數,為使其與傳統的比率智商基本一致,韋克斯勒將離差智商的平均數定為100,標準差定為15.所以離差智商建立在統計學的基礎上,它表示的是個體智力在年齡組中所處的位置,因而是表示智力高低的一種理想指標,具體公式:IQ=100+15Z`=100+15(X-X)/SD

  公式中X表示被試的量表分數,X表示被試所在年齡水平的平均量表分數,SD表這一年齡水平被試的量表分數的標準差.1960年修訂的斯-比測驗中,就使用的是平均數為100,標準差為16的標準分數量表。

  必須指出:從不同的測驗獲得的離差智商只有當標準差相同或接近時才可以比較,標準差不同,其分數的意義便不同。

常模的表達方法

  1、轉換表法

  ——是最簡單而且最基本的表示常模的方法。

  1、一個轉換表顯示出一個特定的標準化樣組的原始分數與其對應的等值分數——百分位、標準分數、T分數或其他任何分數。利用轉換表可將原始分數轉換為與其對應的導出分數,從而對測驗的分數作出有意義的解釋

  2、簡單的轉換表就是將單項測驗的原始分數轉換成一種或幾種導出分數。複雜的轉換表通常包括幾個分測驗或幾種常模團體的原始分數與導出分數的對應關係。

  2、剖面圖

  ——是將測驗分數的轉換關係用圖形表示出來。可以很直觀地看出被試在各分測驗上的表現及其相對位置。

  標準差代表一組數據的離散程度,如一個班內學生數學成績的離散程度從理論上說,心理測量數據一般服從正態分佈,或接近正態分佈。正態分佈曲線的形狀取決於標準差,但曲線下的面積始終為1個單位在心理測量中,個體在團體中的相對位置,以Z分數的大小表示,而Z分數是標準差作為單位,既以包含幾個標準差表示個體分數與總體平均分數的距離,而不是用兩者的絕對分數之差表示表示個體在團體中的相對位置。 根據Z分數可確定低於或某或高於某個分數的人數比例,也可以對不同的測量結果進行比較心理統計基本知識

常模的作用

  常模的作用是讓測驗者明白測驗結果分數的意義。測驗者在人才測評系統中完成心理測驗以後,將會得到一個自己的位置,比如當你完成判斷推理測驗以後,可能被告知你的判斷推理能力要比75%的人都要高,你會不會覺得這是不可思議的呢?你會問,經過測驗就可以知道我會比多少人要高嗎?還是同樣的比喻,你為什麼會信任一個血壓計的指數?因為血壓計是客觀的,其實測驗的結果也是客觀的,兩者的結果都是以數值的形式表現,你之所以能夠從血壓計顯示的數值中瞭解自己的血壓是高了還是低了,那是因為你知道正常的血壓範圍是多少,這是一個比較的結果,將你自己的血壓與正常的血壓範圍進行比較,然後你得出了一個關於自己血壓的結論。

常模分數與常模

  1、常模分數:就是施測常模樣本後,將被試者的原始分數按一定規則轉換出來的導出分數。

  原始分數:是指被試者的反應與標準答案相比較而獲得的測驗分數。

  導出分數:原始分數本身沒有多大意義,必須有一個參照標準才行,在心理測驗中,這種標準是由原始分數構成的分佈轉換而來的分數,叫導出分數。導出分數具有一定的對照點和單位,它實際上是一個有意義的測驗量表,它與原始分數等值,可以進行比較。

  2、常模:就是常模分數構成的分佈,它是解釋心理測驗分數的基礎。

  一般常模:常為測驗指導書上列出的常模。

  特殊常模:為非典型群體建立的,如某個單位。特殊常模的建立方法:根據樣本的原始分數製作次數分佈圖,再計算出導出分數,最後製成轉換表。

本條目對我有幫助16
MBA智库APP

扫一扫,下载MBA智库APP

分享到:
  如果您認為本條目還有待完善,需要補充新內容或修改錯誤內容,請編輯條目

本条目由以下用户参与贡献

Tracy,Mis铭,LuyinT.

評論(共0條)

提示:評論內容為網友針對條目"常模"展開的討論,與本站觀點立場無關。

發表評論請文明上網,理性發言並遵守有關規定。

MBA智库
打开APP

以上内容根据网友推荐自动排序生成