亲爱的MBA智库百科用户:


过去的17年,百科频道一直以免费公益的形式为大家提供知识服务,这是我们团队的荣幸和骄傲。 然而,在目前越来越严峻的经营挑战下,单纯依靠不断增加广告位来维持网站运营支出,必然会越来越影响您的使用体验,这也与我们的初衷背道而驰。 因此,经过审慎地考虑,我们决定推出VIP会员收费制度,以便为您提供更好的服务和更优质的内容。


MBA智库百科VIP会员,您的权益将包括: 1、无广告阅读; 2、免验证复制。


当然,更重要的是长期以来您对百科频道的支持。诚邀您加入MBA智库百科VIP会员,共渡难关,共同见证彼此的成长和进步!



MBA智库百科项目组
2023年8月10日
百科VIP
未登录
无广告阅读
免验证复制
支付方式:
微信支付
支付宝
PayPal
购买数量:
1
应付金额:
10
汇率换算:
10
美元(USD)

按当月汇率换算,

包含手续费

打开手机微信 扫一扫继续付款
立即开通
PayPal支付后,可能会遇到VIP权益未及时开通的情况,请您耐心等待,或者联系百科微信客服:mbalib888。
温馨提示:当无法进去支付页面时,可刷新后重试或更换浏览器
开通百科会员即视为同意《MBA智库·百科会员服务规则》

支付成功

全球专业中文经管百科,由121,994位网友共同编写而成,共计436,063个条目

馬科維茨的均值一方差組合模型

用手机看条目

出自 MBA智库百科(https://wiki.mbalib.com/)

(重定向自均值-方差分析)

馬科維茨的均值一方差組合模型(Markowitz Mean-Variance Model,Markowitz Model簡稱MM)

目錄

[隱藏]

馬科維茨的均值一方差組合模型簡介

  證券及其它風險資產的投資首先需要解決的是兩個核心問題:即預期收益與風險。 那麼如何測定組合投資的風險與收益和如何平衡這兩項指標進行資產分配是市場投資者迫切需要解決的問題。正是在這樣的背景下,在50年代和60年代初,馬可維茲理論應運而生。

馬科維茨模型的假設條件

  該理論依據以下幾個假設:

  1、投資者在考慮每一次投資選擇時,其依據是某一持倉時間內的證券收益的概率分佈

  2、投資者是根據證券的期望收益率估測證券組合的風險。

  3、投資者的決定僅僅是依據證券的風險和收益。

  4、在一定的風險水平上,投資者期望收益最大;相對應的是在一定的收益水平上,投資者希望風險最小。

  根據以上假設,馬可維茲確立了證券組合預期收益、風險的計算方法和有效邊界理論,建立了資產優化配置的均值-方差模型:

  目標函數:minб2(rp)=∑ ∑xixjCov(ri,rj)

      rp= ∑ xiri

  限制條件: 1=∑Xi (允許賣空

    或 1=∑Xi xi>≥0(不允許賣空)

  其中rp為組合收益, ri為第i只股票的收益,xi、 xj為證券 i、j的投資比例,б2(rp)為組合投資方差(組合總風險),Cov (ri 、rj ) 為兩個證券之間的協方差。該模型現代證券投資理論奠定了基礎。上式表明,在限制條件下求解Xi 證券收益率使組合風險б2(rp )最小,可通過朗格朗日目標函數求得。其經濟學意義是,投資者可預先確定一個期望收益,通過上式可確定投資者在每個投資項目(如股票)上的投資比例(項目資金分配),使其總投資風險最小。不同的期望收益就有不同的最小方差組合,這就構成了最小方差集合。

馬科維茨模型的意義

  馬科維茨的投資組合理論不僅揭示了組合資產風險的決定因素,而且更為重要的是還揭示了“資產的期望收益由其自身的風險的大小來決定”這一重要結論,即資產價格(單個資產和組合資產)由其風險大小來定價,單個資產價格由其方差或標準差來決定,組合資產價格由其協方差來決定。馬可維茨的風險定價思想在他創建的“均值-方差”或“均值-標準差”二維空間中投資機會集有效邊界上表現得最清楚。下文在“均值-標準差”二維空間中給出投資機會集有效邊界,圖形如下:

  马科维茨的均值一方差组合模型(Markowitz Mean-Variance Model,Markowitz Model简称MM)

  上面的有效邊界圖形揭示出:單個資產或組合資產的期望收益率由風險測度指標標準差來決定;風險越大收益率越高,風險越小收益率越低;風險對收益的決定是非線性(二次)的雙曲線(或拋物線)形式,這一結論是基於投資者為風險規避型這一假定而得出的。具體的風險定價模型為:

  马科维茨的均值一方差组合模型(Markowitz Mean-Variance Model,Markowitz Model简称MM)(5)

  其中马科维茨的均值一方差组合模型(Markowitz Mean-Variance Model,Markowitz Model简称MM),且A,B,C,D為常量;R表示N個證券收益率的均值(期望)列向量,Ω為資產組合協方差矩陣,1表示分量為1的N維列向量,上標T表示向量(矩陣)轉置(公式(5)的推導過程。

馬科維茨均值一方差組合模型的優缺點

  馬可維茨的風險定價思想和模型具有開創意義,奠定了現代金融學、投資學乃至財務管理學的理論基礎。不過這種理論也有缺點,就是他的數學模型較為複雜,不便於實際操作。

相關條目

本條目對我有幫助282
MBA智库APP

扫一扫,下载MBA智库APP

分享到:
  如果您認為本條目還有待完善,需要補充新內容或修改錯誤內容,請編輯條目投訴舉報

評論(共14條)

提示:評論內容為網友針對條目"馬科維茨的均值一方差組合模型"展開的討論,與本站觀點立場無關。
125.34.0.* 在 2009年3月15日 22:45 發表

本欄目辦得好

回複評論
Shaokao (討論 | 貢獻) 在 2009年6月23日 15:47 發表

請問下這個演算法怎麼推的啊

對買基金很有幫助呢

回複評論
121.233.57.* 在 2009年11月8日 15:34 發表

Shaokao (討論 | 貢獻) 在 2009年6月23日 15:47 發表

請問下這個演算法怎麼推的啊

對買基金很有幫助呢

其實就是簡單的數學 規劃的內容 就是在收益一定時 風險最小的那種投資組合的

回複評論
124.229.43.* 在 2009年12月14日 15:31 發表

不如用展示辦法來說明,一般人能看懂更好些。

回複評論
79.226.14.* 在 2010年1月2日 23:53 發表

呵呵,我正在按這個方法寫程式選基金呢

回複評論
59.37.15.* 在 2010年4月29日 16:50 發表

這些數據直接到Morningstar上面,就可以找到了,不需要自己去算了

回複評論
刘国元 (討論 | 貢獻) 在 2011年6月28日 21:30 發表

哈哈,有這個演算法,銀行的某些人要實業了

回複評論
119.62.200.* 在 2011年7月3日 09:03 發表

事情,總是沒有想像的美好。 這個模型在理論上好用,對於用錢進行投資冒險活動未必好用。

回複評論
14.203.129.* 在 2016年4月21日 21:12 發表

可以用log return計算回報率

回複評論
14.152.69.* 在 2016年8月22日 20:14 發表

求問公式的推導過程

回複評論
新来不做 (討論 | 貢獻) 在 2016年11月1日 22:21 發表

馬科維茲模型演算法過於繁雜,並且建立在收益服從正態分佈的假定上,有一定的局限性,不過結果較精確

回複評論
49.52.96.* 在 2017年12月15日 23:43 發表

121.233.57.* 在 2009年11月8日 15:34 發表

其實就是簡單的數學 規劃的內容 就是在收益一定時 風險最小的那種投資組合的

明明是概率論,你用簡單的數學做得對算你贏。。。

回複評論
192.168.1.* 在 2018年10月23日 16:20 發表

Cov (ri 、rj )不是相關係數麽。。。

回複評論
49.52.99.* 在 2018年12月11日 09:59 發表

Ri是指第i只基金收益率的概率分佈吧?

回複評論

發表評論請文明上網,理性發言並遵守有關規定。

打开APP

以上内容根据网友推荐自动排序生成

官方社群
下载APP
告MBA智库百科用户的一封信
亲爱的MBA智库百科用户: 过去的17年,百科频道一直以免费公益的形式为大家提供知识服务,这是我们团队的荣幸和骄傲。 然而,在目前越来越严峻的经营挑战下,单纯依靠不断增加广告位来维持网站运营支出,必然会越来越影响您的使用体验,这也与我们的初衷背道而驰。 因此,经过审慎地考虑,我们决定推出VIP会员收费制度,以便为您提供更好的服务和更优质的内容。 MBA智库百科VIP会员(9.9元 / 年,点击开通),您的权益将包括: 1、无广告阅读; 2、免验证复制。 当然,更重要的是长期以来您对百科频道的支持。诚邀您加入MBA智库百科VIP会员,共渡难关,共同见证彼此的成长和进步!
MBA智库百科项目组
2023年8月10日

闽公网安备 35020302032707号

添加收藏

    新建收藏夹

    编辑收藏夹

    20