全球专业中文经管百科,由121,994位网友共同编写而成,共计435,837个条目

莫比烏斯帶

用手机看条目

出自 MBA智库百科(https://wiki.mbalib.com/)

莫比烏斯帶(Möbius strip/Mobius Band)

目錄

什麼是莫比烏斯帶

  公元1858年,德國數學家莫比烏斯(Mobius,1790~1868)和約翰·李斯丁發現:把一根紙條扭轉180°後,兩頭再粘接起來做成的紙帶圈,具有魔術般的性質。普通紙帶具有兩個面(即雙側曲面),一個正面,一個反面,兩個面可以塗成不同的顏色;而這樣的紙帶只有一個面(即單側曲面),一隻小蟲可以爬遍整個曲面而不必跨過它的邊緣。這種紙帶被稱為“莫比烏斯帶”(也就是說,它的曲面只有一個)。

莫比烏斯帶和幾何學關係

  可以用參數方程式創造出立體莫比烏斯帶。

  x(u,v)=(1+{\frac{v}{2}}\cos{\frac{u}{2}})\cos (u)

  y(u,v)=(1+{\frac{v}{2}}\cos{\frac{u}{2}})\sin (u)

  z(u,v)={\frac{v}{2}}\cos{\frac{u}{2}}

  (0\le u<2\pi,-1\le v\le 1)

  這個方程組可以創造一個邊長為1半徑為1的莫比烏斯帶,所處位置為x-y面,中心為(0,0,0)。參數u在v從一個邊移動到另一邊的時候環繞整個帶子。

  從拓撲學上來講,莫比烏斯帶可以定義為矩陣[0,1]×[0,1],邊由在0≤x≤1的時候(x,0)~(1-x,1)決定。

  莫比烏斯帶是一個二維的緊致流形(即一個有邊界的面),可以嵌入到三維或更高維的流形中。它是一個不可定向的的標準範例,可以看作RP#RP。同時也是數學上描繪纖維叢的例子之一。特別地,它是一個有一纖維單位區間,I= [0,1]的圓S上的非平凡叢。僅從莫比烏斯帶的邊緣看去給出S上一個非平凡的兩個點(或Z2)的叢。

莫比烏斯帶的製作方法

  拿一張白的長紙條,把一面塗成黑色,然後把其中一端翻一個身,粘成一個莫比烏斯帶。用剪刀沿紙帶的中央把它剪開。紙帶不僅沒有一分為二,反而剪出一個兩倍長的紙圈。

  新得到的這個較長的紙圈,本身卻是一個雙側曲面,它的兩條邊界自身雖不打結,但卻相互套在一起。把上述紙圈,再一次沿中線剪開,這回可真的一分為二了,得到的是兩條互相套著的紙圈,而原先的兩條邊界,則分別包含於兩條紙圈之中,只是每條紙圈本身並不打結罷了。

  莫比烏斯帶還有更為奇異的特性。一些在平面上無法解決的問題,卻不可思議地在莫比烏斯帶上獲得瞭解決。

  比如在普通空間無法實現的"手套易位"問題:人左右兩手的手套雖然極為相像,但卻有著本質的不同。我們不可能把左手的手套貼切地戴到右手上去;也不能把右手的手套貼切地戴到左手上來。無論你怎麼扭來轉去,左手套永遠是左手套,右手套也永遠是右手套!不過,倘若你把它搬到莫比烏斯帶上來,那麼解決起來就易如反掌了。

  在自然界有許多物體也類似於手套那樣,它們本身具備完全相像的對稱部分,但一個是左手系的,另一個是右手系的,它們之間有著極大的不同。

莫比烏斯帶的拓撲變換

  莫比烏斯帶是一種拓展圖形,它們在圖形被彎曲、拉大、縮小或任意的變形下保持不變,只要在變形過程中不使原來不同的點重合為同一個點,又不產生新點。換句話說,這種變換的條件是:在原來圖形的點與變換了圖形的點之間存在著一一對應的關係,並且鄰近的點還是鄰近的點。這樣的變換叫做拓撲變換。拓撲有一個形象說法——橡皮幾何學。因為如果圖形都是用橡皮做成的,就能把許多圖形進行拓撲變換。例如一個橡皮圈能變形成一個圓圈或一個方圈。但是一個橡皮圈不能由拓撲變換成為一個阿拉伯數字8。因為不把圈上的兩個點重合在一起,圈就不會變成8,“莫比烏斯帶”正好滿足了上述要求。

相關條目

本條目對我有幫助3
MBA智库APP

扫一扫,下载MBA智库APP

分享到:
  如果您認為本條目還有待完善,需要補充新內容或修改錯誤內容,請編輯條目投訴舉報

本条目由以下用户参与贡献

nonameh.

評論(共0條)

提示:評論內容為網友針對條目"莫比烏斯帶"展開的討論,與本站觀點立場無關。

發表評論請文明上網,理性發言並遵守有關規定。

打开APP

以上内容根据网友推荐自动排序生成

下载APP

闽公网安备 35020302032707号