亲爱的MBA智库百科用户:


过去的17年,百科频道一直以免费公益的形式为大家提供知识服务,这是我们团队的荣幸和骄傲。 然而,在目前越来越严峻的经营挑战下,单纯依靠不断增加广告位来维持网站运营支出,必然会越来越影响您的使用体验,这也与我们的初衷背道而驰。 因此,经过审慎地考虑,我们决定推出VIP会员收费制度,以便为您提供更好的服务和更优质的内容。


MBA智库百科VIP会员,您的权益将包括: 1、无广告阅读; 2、免验证复制。


当然,更重要的是长期以来您对百科频道的支持。诚邀您加入MBA智库百科VIP会员,共渡难关,共同见证彼此的成长和进步!



MBA智库百科项目组
2023年8月10日
百科VIP
未登录
无广告阅读
免验证复制
1年VIP
¥ 9.9
支付方式:
微信支付
支付宝
PayPal
购买数量:
1
应付金额:
9.9
汇率换算:
1.32
美元(USD)
  • 美元(USD)
  • 加元(CAD)
  • 日元(JPY)
  • 英镑(GBP)
  • 欧元(EUR)
  • 澳元(AUD)
  • 新台币(TWD)
  • 港元(HKD)
  • 新加坡(SGD)
  • 菲律宾(PHP)
  • 泰铢(THB)

按当月汇率换算,

包含手续费

打开手机微信 扫一扫继续付款
立即开通
PayPal支付后,可能会遇到VIP权益未及时开通的情况,请您耐心等待,或者联系百科微信客服:mbalib888。
温馨提示:当无法进去支付页面时,可刷新后重试或更换浏览器
开通百科会员即视为同意《MBA智库·百科会员服务规则》

支付成功

全球专业中文经管百科,由121,994位网友共同编写而成,共计436,073个条目

矩法估计

用手机看条目

出自 MBA智库百科(https://wiki.mbalib.com/)

目录

[隐藏]

什么是矩法估计

  对于随机变量来说,矩是其最广泛,最常用的数字特征,母体ξ的各阶矩一般与ξ的分布中所含的未知参数有关,有的甚至就等于未知参数。由辛钦大数定律知,简单随机子样的子样原点矩\bar{\xi^r}依概率收敛到相应的母体原点矩Eξr,r = 1,2,Λ。这就启发我们想到用子样矩替换母体矩(今后称之为替换原则),进而找出未知参数的估计,基于这种思想求估计量的方法称为矩法。用矩法求得的估计称为矩法估计,简称矩估计。它是由英国统计学家皮尔逊Pearson于1894年提出的。

矩法估计的理论依据

  由辛钦大数定律知:

  \bar{\xi^r}\overrightarrow{p}E\xi^r,r=1,2,\Lambda

  即对\nu\varepsilon>0,有

  lim_{n\to\infty}P(|\bar{\xi^r}-E\xi^r|>\varepsilon)=0

  或

  lim_{n\to\infty}P(|\bar{\xi^r}-E\xi^r|\le\varepsilon)=1

矩法估计的具体步骤

  设母体ξ的概率函数为f(x1,Λ,θk),其中(\theta_1,\Lambda,\theta_k)\in\Theta是k个未知参数,ξ1,Λ,ξn是取自这一母体的一个子样。设ξ的k阶矩vk = Eξk存在,则vj,j < k都存在,并且是θ1,Λ,θk的函数vj1,Λ,θk),又子样ξ1,Λ,θk的j阶矩为\bar{\xi_n}=\frac{1}{n}\sum_{i=1}^n\xi_i^j。我们设

  \begin{cases} \bar{\xi}=E\xi \\ \bar{\xi^2}=E\xi^2 \\ \Lambda\Lambda\Lambda \\ \bar{\xi^k}=E\xi^k \end{cases}    (1)

  这样我们就得到含k个未知参数θ1,Λ,θk的k个方程,解由这k个方程联列所构成的方程组就可以得到theta1,Λ,θk的一组解:

  \begin{cases} \hat{\theta_1}=\hat{\theta_1}(\xi_1,\Lambda,\xi_n) \\ \hat{\theta_2}=\hat{\theta_2}(\xi_1,\Lambda,\xi_n) \\ \Lambda\Lambda\Lambda\Lambda\Lambda\Lambda\Lambda \\ \hat{\theta_k}=\hat{\theta_k}(\xi_1,\Lambda,\xi_n) \end{cases}    (2)

  用(2)中的解\hat{\theta_i}来估计参数θi 就是矩法估计。

  一般我们考察k\le 3的情形。

  在数理统计学中,我们一般用\hat{\theta}表示θ的估计量。

  下面我们举一个与实际问题有关的多参数的矩法估计问题。

  例:已知大学生英语四级考试成绩ξ~N(μ,σ2),均值μ,方差σ2均未知,ξ1,Λ,ξn为取自母体ξ的一个子样,(x1,Λ,xn)是子样的一组观测值,求μσ2的矩法估计。

  解:注意到有两个未知参数,由矩法估计知需两个方程,按照(1)式得方程组

  \begin{cases} \mu=\bar{\xi} \\ \sigma^2+\mu^2=\bar{\xi^2} \end{cases}

  解这一方程组得μσ的矩法估计量

  从而μσ2的矩法估计值分别为\bar{x}\hat{=}\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})^2

  分析:注意到我们这里求出μσ2的矩法估计并未用到母体ξ的分布。这样对μ,σ2作出了估计,也就对整个母体分布作出了推断,进而对大学生英语四级考试成绩ξ相关的其它数字特征如标准分、标准差偏态系数等作出了估计。

矩法估计的优缺点

  矩法估计原理简单、使用方便,使用时可以不知母体的分布,而且具有一定的优良性质(如矩估计\bar{\xi}Eξ的一致最小方差无偏估计),因此在实际问题,特别是在教育统计问题中被广泛使用。

  但在寻找参数的矩法估计量时,对母体原点矩不存在的分布如柯西分布等不能用,另一方面它只涉及母体的一些数字特征,并未用到母体的分布,因此矩法估计量实际上只集中了母体的部分信息,这样它在体现母体分布特征上往往性质较差,只有在样本容量n较大时,才能保障它的优良性,因而理论上讲,矩法估计是以大样本为应用对象的。

本条目对我有帮助51
MBA智库APP

扫一扫,下载MBA智库APP

分享到:
  如果您认为本条目还有待完善,需要补充新内容或修改错误内容,请编辑条目投诉举报

本条目由以下用户参与贡献

Zfj3000,Kane0135,Cabbage,Yixi.

评论(共3条)

提示:评论内容为网友针对条目"矩法估计"展开的讨论,与本站观点立场无关。
222.240.210.* 在 2008年4月26日 10:32 发表

非常感谢,对我很有用```

回复评论
218.14.17.* 在 2010年12月19日 12:26 发表

转了

回复评论
211.137.59.* 在 2012年8月29日 15:01 发表

非常感谢

回复评论

发表评论请文明上网,理性发言并遵守有关规定。

打开APP

以上内容根据网友推荐自动排序生成

官方社群
下载APP
告MBA智库百科用户的一封信
亲爱的MBA智库百科用户: 过去的17年,百科频道一直以免费公益的形式为大家提供知识服务,这是我们团队的荣幸和骄傲。 然而,在目前越来越严峻的经营挑战下,单纯依靠不断增加广告位来维持网站运营支出,必然会越来越影响您的使用体验,这也与我们的初衷背道而驰。 因此,经过审慎地考虑,我们决定推出VIP会员收费制度,以便为您提供更好的服务和更优质的内容。 MBA智库百科VIP会员(9.9元 / 年,点击开通),您的权益将包括: 1、无广告阅读; 2、免验证复制。 当然,更重要的是长期以来您对百科频道的支持。诚邀您加入MBA智库百科VIP会员,共渡难关,共同见证彼此的成长和进步!
MBA智库百科项目组
2023年8月10日

闽公网安备 35020302032707号

添加收藏

    新建收藏夹

    编辑收藏夹

    20