亲爱的MBA智库百科用户:


过去的17年,百科频道一直以免费公益的形式为大家提供知识服务,这是我们团队的荣幸和骄傲。 然而,在目前越来越严峻的经营挑战下,单纯依靠不断增加广告位来维持网站运营支出,必然会越来越影响您的使用体验,这也与我们的初衷背道而驰。 因此,经过审慎地考虑,我们决定推出VIP会员收费制度,以便为您提供更好的服务和更优质的内容。


MBA智库百科VIP会员,您的权益将包括: 1、无广告阅读; 2、免验证复制。


当然,更重要的是长期以来您对百科频道的支持。诚邀您加入MBA智库百科VIP会员,共渡难关,共同见证彼此的成长和进步!



MBA智库百科项目组
2023年8月10日
百科VIP
未登录
无广告阅读
免验证复制
1年VIP
¥ 9.9
支付方式:
微信支付
支付宝
PayPal
购买数量:
1
应付金额:
9.9
汇率换算:
1.32
美元(USD)
  • 美元(USD)
  • 加元(CAD)
  • 日元(JPY)
  • 英镑(GBP)
  • 欧元(EUR)
  • 澳元(AUD)
  • 新台币(TWD)
  • 港元(HKD)
  • 新加坡(SGD)
  • 菲律宾(PHP)
  • 泰铢(THB)

按当月汇率换算,

包含手续费

打开手机微信 扫一扫继续付款
立即开通
PayPal支付后,可能会遇到VIP权益未及时开通的情况,请您耐心等待,或者联系百科微信客服:mbalib888。
温馨提示:当无法进去支付页面时,可刷新后重试或更换浏览器
开通百科会员即视为同意《MBA智库·百科会员服务规则》

支付成功

全球专业中文经管百科,由121,994位网友共同编写而成,共计436,064个条目

标准误差

用手机看条目

出自 MBA智库百科(https://wiki.mbalib.com/)

(重定向自均方根误差)

标准误差(Standard error),也称均方根误差(Root mean squared error)

目录

[隐藏]

什么是标准误差

  标准误差是指在抽样试验(或重复的等精度测量)中,常用到样本平均数的标准差。注意:标准差与标准误差是两个不同的概念[1]

  标准误差是当前应用最广泛、最基本的一种随机误差的表示方法,当标准误差求得后,平均误差和极限差即可求得 故国际上普遍采用标准误差作为实验结果质量的数字指标,同时按国际计量局建议,不确定度用标准差σ表征(或方差σ2表征)。由此可知,标准误差在数据处理上的作用十分重要[2]

标准误差的公式

  设n个测量值的误差为E1E2……En,则这组测量值的标准差σ等于:

  \sigma=\sqrt{\frac{E_1^2+E_2^2+\cdots+E_n^2}{n}}=\sqrt{\frac{\sum E_i^2}{n}}

  其中,E = XiT,式中:E-误差;Xi-测定值;T-真实值。

  由于被测量的真值是未知数,各测量值的误差也都不知道,因此不能按上式求得标准误差。测量时能够得到的是算术平均值,它最接近真值(N),而且也容易算出测量值和算术平均值之差,称为残差(记为v)。理论分析表明可以用残差v表示有限次(n次)观测中的某一次测量结果的标准差σ,其计算公式为:

  \sigma=\sqrt{\frac{(N_1-N)^2+(N_2-N)^2++\cdots+(N_n-N)^2}{n-1}}=\sqrt{\frac{\sum v_i^2}{n-1}}

  对于一组等精度测量(n次测量)数据的算术平均值,其误差应该更小些。理论分析表明,它的算术平均值的标准误差。有的书中或计算器上用符号s表示):

  \sigma_{\bar{N}}=\frac{\sigma}{\sqrt{n}}=\sqrt{\frac{\sum v_i^2}{n(n-1)}}

标准误差的注意点

  需要注意的是,标准误差不是测量值的实际误差,也不是误差范围,它只是对一组测量数据可靠性的估计。标准误差小,测量的可靠性大一些,反之,测量就不大可靠。进一步的分析表明,根据偶然误差的高斯理论,当一组测量值的标准误差为σ时,则其中的任何一个测量值的误差Ei有68.3%的可能性是在(-σ,+σ)区间内。

  世界上多数国家的物理实验和正式的科学实验报告都是用标准误差评价数据的,现在稍好一些的计算器都有计算标准误差的功能,因此,了解标准误差是必要的。

标准误与标准差的区别[1]

  标准差与标准误的意义、作用和使用范围均不同。标准差(亦称单数标准差)一般用s表示,是表示个体间变异大小的指标,反映了整个样本对样本平均数的离散程度,是数据精密度的衡量指标;而标准误一般用s_{\bar{x}}表示,反映样本平均数对总体平均数的变异程度,从而反映抽样误差的大小,是量度结果精密度的指标。

  随着样本数(或测量次数)n的增大,标准差趋向某个稳定值,即样本标准差s越接近总体标准差σ,而标准误则随着样本数(或测量次数)n的增大逐渐减小,即样本平均数越接近总体平均数μ;故在实验中也经常采用适当增加样本数(或测量次数)n减小s_{\bar{x}}的方法来减小实验误差,但样本数太大意义也不大。标准差是最常用的统计量,一般用于表示一组样本变量的分散程度;标准误一般用于统计推断中,主要包括假设检验参数估计,如样本平均数的假设检验、参数的区间估计点估计等。

  标准差与标准误既有明显区别,又密切相关:标准误是标准差的1/\sqrt{n};二者都是衡量样本变量(观测值)随机性的指标,只是从不同角度来反映误差;二者在统计推断和误差分析中都有重要的应用。

相关条目

本条目对我有帮助186
MBA智库APP

扫一扫,下载MBA智库APP

分享到:
  如果您认为本条目还有待完善,需要补充新内容或修改错误内容,请编辑条目投诉举报

评论(共7条)

提示:评论内容为网友针对条目"标准误差"展开的讨论,与本站观点立场无关。
83.171.31.* 在 2013年3月9日 14:08 发表

这是标准差standard variation而不是standard error

回复评论
121.33.190.* 在 2014年4月20日 16:14 发表

嗯,这的确是是标准差,这个词条错了

回复评论
58.215.136.* 在 2014年11月30日 13:16 发表

最前面的式子明显是标准差的,符号都写了竟然出现的是标准差的式子

回复评论
120.193.239.* 在 2016年4月12日 07:48 发表

1

回复评论
218.94.148.* 在 2016年10月25日 15:27 发表

121.33.190.* 在 2014年4月20日 16:14 发表

嗯,这的确是是标准差,这个词条错了

是的 还MBA这不是坑人吗!!!

回复评论
110.80.63.* 在 2016年10月25日 17:55 发表

218.94.148.* 在 2016年10月25日 15:27 发表

是的 还MBA这不是坑人吗!!!

之前公式的确有疏漏,进行了相关修改,看看改的对不对

回复评论
117.88.82.* 在 2021年6月20日 01:59 发表

第一第二个公式为标准差,第三个公式为标准误差。

回复评论

发表评论请文明上网,理性发言并遵守有关规定。

打开APP

以上内容根据网友推荐自动排序生成

官方社群
下载APP
告MBA智库百科用户的一封信
亲爱的MBA智库百科用户: 过去的17年,百科频道一直以免费公益的形式为大家提供知识服务,这是我们团队的荣幸和骄傲。 然而,在目前越来越严峻的经营挑战下,单纯依靠不断增加广告位来维持网站运营支出,必然会越来越影响您的使用体验,这也与我们的初衷背道而驰。 因此,经过审慎地考虑,我们决定推出VIP会员收费制度,以便为您提供更好的服务和更优质的内容。 MBA智库百科VIP会员(9.9元 / 年,点击开通),您的权益将包括: 1、无广告阅读; 2、免验证复制。 当然,更重要的是长期以来您对百科频道的支持。诚邀您加入MBA智库百科VIP会员,共渡难关,共同见证彼此的成长和进步!
MBA智库百科项目组
2023年8月10日

闽公网安备 35020302032707号

添加收藏

    新建收藏夹

    编辑收藏夹

    20