全球专业中文经管百科,由121,994位网友共同编写而成,共计436,017个条目

Kendall等級相關係數

用手机看条目

出自 MBA智库百科(https://wiki.mbalib.com/)

Kendall等級相關係數(Kendall tau rank correlation coefficient,肯德爾等級相關係數)

The Kendall tau rank correlation coefficient (or simply the Kendall tau coefficient, Kendall's τ or tau test(s)) is a non-parametric statistic used to measure the degree of correspondence between two rankings and assessing the significance of this correspondence. In other words, it measures the strength of Association of the cross tabulations.

It was developed by Maurice Kendall in 1938.

目錄

Definition

The Kendall tau coefficient (τ) has the following properties:

  • If the agreement between the two rankings is perfect (i.e., the two rankings are the same) the coefficient has value 1.
  • If the disagreement between the two rankings is perfect (i.e., one ranking is the reverse of the other) the coefficient has value −1.
  • For all other arrangements the value lies between −1 and 1, and increasing values imply increasing agreement between the rankings. If the rankings are completely independent, the coefficient has value 0 on average.

Kendall tau coefficient is defined

\tau = \frac{2P}{\frac{1}{2}{n(n-1)}} - 1 = \frac{4P}{n(n-1)} - 1

where n is the number of items, and P is the sum, over all the items, of the number of items ranked after the given item by both rankings.

P can also be interpreted as the number of concordant pairs . The denominator in the definition of τ can be interpreted as the total number of pairs of items. So, a high value of P means that most pairs are concordant, indicating that the two rankings are consistent. Note that a tied pair is not regarded as concordant or discordant. If there is a large number of ties, the total number of pairs (in the denominator of the expression of τ) should be adjusted accordingly.

Tau a, b and c

  • Tau a — This tests the strength of association of the cross tabulations when both variables are measured at the ordinal level but makes no adjustment for ties.
  • Tau b — This tests the strength of association of the cross tabulations when both variables are measured at the ordinal level. It makes adjustments for ties and is most suitable for square tables. Values range from −1 (100% negative association, or perfect inversion) to +1 (100% positive association, or perfect agreement). A value of zero indicates the absence of association.
  • Tau c — This tests the strength of association of the cross tabulations when both variables are measured at the ordinal level. It makes adjustments for ties and is most suitable for rectangular tables. Values range from −1 (100% negative association, or perfect inversion) to +1 (100% positive association, or perfect agreement). A value of zero indicates the absence of association.

Example

Suppose we rank a group of eight people by height and by weight where person A is tallest and third-heaviest, and so on:

Person A B C D E F G H
Rank by Height 1 2 3 4 5 6 7 8
Rank by Weight 3 4 1 2 5 7 8 6

We see that there is some correlation between the two rankings but the correlation is far from perfect. We can use the Kendall tau coefficient to objectively measure the degree of correspondence.

Notice in the Weight ranking above that the first entry, 3, has seven other elements to its right (4,1,2,5,7,8,6). How many of these elements are also to the right of 3 in the other ranking?
The elements to the right of 3 in the Height ranking are: 4,5,6,7,8, so the number of elements to the right of 3 in both rankings is 5 (they are 4,5,6,7,8) and so the contribution to P of this entry is 5.
Moving to the second entry, 4, we see that there are six elements to the right of it. Among these elements those that are to the right of 4 also in the other ranking are four (5,6,7,8), so the contribution to P is 4. Continuing this way, we find that

P = 5 + 4 + 5 + 4 + 3 + 1 + 0 + 0 = 22.

Thus \tau= \frac{88}{56}-1 = \frac{44}{28}-1 = 0.57. This result indicates a strong agreement between the rankings, as expected.

See also

References

  • (2007) Kendall rank correlation. In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics. Thousand Oaks (CA): Sage.
  • Kruskal, W.H. (1958) "Ordinal Measures of Association", Journal of the American Statistical Association, 53(284), 814-861.
  • Kendall, M. (1948) Rank Correlation Methods, Charles Griffin & Company Limited
  • Kendall, M. (1938) "A New Measure of Rank Correlation", Biometrika, 30, 81-89.

External links

本條目對我有幫助16
MBA智库APP

扫一扫,下载MBA智库APP

分享到:
  如果您認為本條目還有待完善,需要補充新內容或修改錯誤內容,請編輯條目投訴舉報

本条目由以下用户参与贡献

Vulture.

評論(共1條)

提示:評論內容為網友針對條目"Kendall等級相關係數"展開的討論,與本站觀點立場無關。
124.118.6.* 在 2013年5月6日 01:07 發表

gei wo huy dian hua

回複評論

發表評論請文明上網,理性發言並遵守有關規定。

打开APP

以上内容根据网友推荐自动排序生成

下载APP

闽公网安备 35020302032707号