潜在产出法
出自 MBA智库百科(https://wiki.mbalib.com/)
潜在产出法(potential output approach ,PO) 也称边界生产函数法(frontier production function)
目录 |
索洛残差法和隐性变量法在估算全要素生产率时,都暗含着一个重要的假设即认为经济资源得到充分利用,此时,全要素生产率增长就等于技术进步率。换言之,这两种方法在估算全要素生产率时,都忽略了全要素生产率增长的另一个重要组成部分———能力实现改善( improvement incapacity realization) 即技术效率提升的影响。潜在产出法(potential output approach,PO) 也称边界生产函数法(frontier production function) 正是基于上述考虑提出的,其基本思路是遵循法雷尔(Farrell ,1957) 的思想,将经济增长归为要素投入增长、技术进步和能力实现改善(技术效率提升) 三部分,全要素生产率增长就等于技术进步率与能力实现率改善之和;估算出能力实现率和技术进步率,便给出全要素生产率增长率。[1]
设Ry , t为产出增长率, RTP,t为技术进步率, CRt 为能力实现率, Ryx,t 为要素投入增长所带来的产出增长率, RTFP,t为全要素生产率增长率,则有:
Ry,t = RTP,t + ΔCRt + Ryx,t (1)
且全要素生产率增长率等于技术进步率与能力实现率变化之和,即:
RTFP,t = RTP,t + ΔCRt (2)
能力实现率CRt 测度了现有生产能力的利用程度,反映了现实经济的生产技术效率,通常利 用产出缺口来度量。产出缺口的估算方法很多,目前较为流行的是HP 滤波(Hodrick-Prescott , 1990) ,它是通过最小化(T 为样本期) :
(3)
从而将现实产出的自然对数LnYt 分解为趋势成分(即潜在产出的自然对数和周期性成分 (即产出缺口 )。[2]
如前所述,索洛残差法和隐性变量法估算的全要素生产率增长率就等于技术进步率,鉴于索洛残差法较为粗糙,所以我们利用隐性变量法估算的全要素生产率增长率作为技术进步率RTP ,这样利用公式(2) 便得到全要素生产率的估算。潜在产出法最大的优点在于,全面考虑了技术进步和能力实现改善对全要素生产率增长的影响,且借助这种方法可以更全面地分析经济增长源泉。但它的缺点也很明显,主要体现在它是建立在产出缺口估算基础上,而无论用何种方法估算产出缺口,都会存在估算误差,从而导致全要素生产率增长率估算偏差。
潜在产出法最大的优点在于,全面考虑了技术进步和能力实现改善对全要素生产率增长的影响,且借助这种方法可以更全面地分析经济增长源泉。但它的缺点也很明显,主要体现在它是建立在产出缺口估算基础上,而无论用何种方法估算产出缺口,都会存在估算误差,从而导致全要素生产率增长率估算偏差。
- ↑ 潜在产出法可分为两类:一是参数随机边界分析(stochastic frontier analysis,SFA) ,其中较为流行的方法为Hildreth and Houck(1968) 的随机系数面板模(random coefficient panel model) ,这类方法可以很好地处理度量误差,但需要给出生产函数形式和分布的明确假设,对于样本量较少的实证研究而言,存在着较大问题(Gong and Sickles ,1992) 。二是非参数数据包络分析(data envelopmentanalysis,DEA) ,这种方法直接利用线性优化给出边界生产函数与距离函数的估算,无需对生产函数形式和分布做出假设,从而避免了较强的理论约束。但这两类方法只适合于面板数据,并不能单独估算出某一主体的全要素生产率增长,所以本文没有采用这两种方法。
- ↑ 郭庆旺、贾俊雪(2004a) 详细比较分析了潜在产出与产出缺口的三种估算方法。