全球专业中文经管百科,由121,994位网友共同编写而成,共计436,057个条目

二次曲线法

用手机看条目

出自 MBA智库百科(https://wiki.mbalib.com/)

目录

什么是二次曲线法

  二次曲线法是研究时间序列观察值数据随时间变动呈现一种由高到低再到高(或由低到高再到低)的趋势变化的曲线外推预测方法.由于时间序列观察值的散点图呈现抛物线形状,故也称之为二次抛物线预测模型。

  假设曲线趋势外推预测模型为:

  \hat y_t=\hat a+\hat b x_t+\hat c x_t^2+\hat dx_t^3+\hat e x_t^4+\cdots

  式中:\hat y_t第t期某变量的预测值(因变量);xt——时间变量(自变量),t=1,2,\cdots,n

  1) 当\hat c=\hat d=\cdots=0时,\hat y_t=\hat a +\hat b x_t,即为线性趋势外推预测法的模型;

  2) 当\hat d=\hat e=\cdots=0时,\hat y_t=\hat a +\hat b x_t+\hat c x_t^2,即为二次曲线外推预测法的模型。

二次曲线法的计算[1]

  最小二乘法确定待定参数

  1) 参数的确定

  设yt表示第t期的时间序列的观察值;\hat{y_t}——第t期的预测值;et——第t期的离差;Q——离差平方和。由二次曲线外推预测法的模型\hat{y_t}=\hat a+\hat bx_t +\hat cx_t ^2,有

  e_t=y_t-\hat y_t=y_t-\hat a-\hat bx_t-\hat cx_t^2

  Q=\sum_{t=1}^{n}e_t^2=\sum_{t=1}^{n}(y_t-\hat a-\hat bx_t-\hat cx_t^2)^2 (3.2.2)

  与拟合直线外推法相同的原理,对式(3.2.2)求\frac{\partial Q}{\partial\hat a},\frac{\partial Q}{\partial\hat b},\frac{\partial Q}{\partial\hat c},并分别令其等于0,则可得关于\hat a,\hat b,\hat c,的方程组

  \begin{cases}\sum_{t=1}^n y_t=n\hat a+\hat b\sum_{t=1}^n x_t+\hat c \sum_{t=1}^n x_t^2 \\ \sum_{t=1}^n x_t y_t=\hat a\sum_{t=1}^n x_t+\hat b\sum_{t=1}^n x_t^2+\hat c \sum_{t=1}^n x_t^3 \\ \sum_{t=1}^n x_t^2 y_t=\hat a\sum_{t=1}^n x_t^2+\hat b\sum_{t=1}^n x_t^3+\hat c \sum_{t=1}^n x_t^4 \end{cases} (3.2.3)

  由于xt表示时间序列的编号,如同拟合直线方程法一样,当时间序列观察期的项数为奇数时,令其中间项(\frac{n+1}{2})的编号为0,则\sum_{t=1}^n x_t=0,\sum_{t=1}^n x_t^3=0,\cdots,

  式(3.2.3)可简化为:

  \begin{cases} \sum_{t=1}^n y_t=n\hat a++\hat c \sum_{t=1}^n x_t^2 \\ \sum_{t=1}^n x_t y_t=\hat b\sum_{t=1}^n x_t^2 \\ \sum_{t=1}^n x_t^2 y_t=\hat a\sum_{t=1}^n x_t^2+\hat c \sum_{t=1}^n x_t^4 \end{cases} (3.2.4)

  解上面的方程组可得:

  \begin{cases} \hat a=\frac{\sum_{t=1}^n x_t^4 \sum_{t=1}^n y_t-\sum_{t=1}^n x_t^2\sum_{t=1}^n x_t^2y_t}{n\sum_{t=1}^n x_t^4-(\sum_{t=1}^n x_t^2)^2} \\ \hat b=\frac{\sum_{t=1}^n x_t y_t}{\sum_{t=1}^n x_t^2} \\ \hat c=\frac{n\sum_{t=1}^n x_t^2 y_t-\sum_{t=1}^n x_t^2 \sum_{t=1}^n y_t}{n\sum_{t=1}^n x_t^4-(\sum_{t=1}^n x_t^2)^2} \end{cases} (3.2.5)

  2) 预测步骤

  例3.4某公司1995~2003年的商品销售收入如表3.4所示,试预测该公司2004年的销售收入

表3.4某公司1995~2003年商品销售收入数据表 (单位:万元)
年份1995199619971998 19992000200120022003
销售收入545641764923 11071322 1568 18362140

  解:

  ①绘制散点图如图3.3所示。Image:绘制的散点图.jpg

  ②根据观察值的散点图的变化趋势确定其属于二次曲线变化趋势后,列表计算二次曲线待定参数所需的数据。计算结果如表3.5所示。

  ③计算待定参数,建立预测模型,并计算预测值。

  利用表3.5中的有关数据,代入式(3.2.5)中,计算得:

  \hat a=1107.29,\hat b=199.53,\hat c=14.67

  该例的二次曲线的趋势外推预测模型为:

  \hat y_t=1107.29+119.53 x_t+14.67 x_t^2 (3.2.6)

  当x_t=5时,代入上式得

  \hat y_{2004}=1107.29+119.53\times 5+14.67\times 25=2471.89(万元)

表3.5某公司商品销售收入及有关数据计算表 (单位:万元)
年份xt销售额ytx_t^2x_t^4xtytx_t^2 y_t\hat y_t(y_t-\hat y_t)^2
1995-45451625621808720543.891.23
1996-3641981-19235769640.730.07
1997-2764416-15283056766.918.47
1998-192311-923923922.430.32
19990110700001107.290.08
20001132211132213221321.490.26
200121568416313662721565.038.82
2002318369815508165241837.913.65
200342140162568560342402140.130.02
\sum01084660708119727682622.92

二次曲线法的特点

  (1)二次曲线方程的二阶差分是一个常数。

  (2)二次曲线法适用于时间序列数据呈抛物线形状上升或下降,且曲线仅有一个极点(极大值或极小值)的情况下使用。

  (3)对于更高次的曲线方程,分析思路、求解未知参数的方法与此类似。

相关条目

参考文献

  1. 第3章 趋势外推预测法
本条目对我有帮助13
MBA智库APP

扫一扫,下载MBA智库APP

分享到:
  如果您认为本条目还有待完善,需要补充新内容或修改错误内容,请编辑条目投诉举报

本条目由以下用户参与贡献

Cabbage,Zfj3000,Yixi,KAER.

评论(共0条)

提示:评论内容为网友针对条目"二次曲线法"展开的讨论,与本站观点立场无关。

发表评论请文明上网,理性发言并遵守有关规定。

打开APP

以上内容根据网友推荐自动排序生成

官方社群
下载APP

闽公网安备 35020302032707号