亲爱的MBA智库百科用户:


过去的17年,百科频道一直以免费公益的形式为大家提供知识服务,这是我们团队的荣幸和骄傲。 然而,在目前越来越严峻的经营挑战下,单纯依靠不断增加广告位来维持网站运营支出,必然会越来越影响您的使用体验,这也与我们的初衷背道而驰。 因此,经过审慎地考虑,我们决定推出VIP会员收费制度,以便为您提供更好的服务和更优质的内容。


MBA智库百科VIP会员,您的权益将包括: 1、无广告阅读; 2、免验证复制。


当然,更重要的是长期以来您对百科频道的支持。诚邀您加入MBA智库百科VIP会员,共渡难关,共同见证彼此的成长和进步!



MBA智库百科项目组
2023年8月10日
百科VIP
未登录
无广告阅读
免验证复制
1年VIP
¥ 9.9
支付方式:
微信支付
支付宝
PayPal
购买数量:
1
应付金额:
9.9
汇率换算:
1.32
美元(USD)
  • 美元(USD)
  • 加元(CAD)
  • 日元(JPY)
  • 英镑(GBP)
  • 欧元(EUR)
  • 澳元(AUD)
  • 新台币(TWD)
  • 港元(HKD)
  • 新加坡(SGD)
  • 菲律宾(PHP)
  • 泰铢(THB)

按当月汇率换算,

包含手续费

打开手机微信 扫一扫继续付款
立即开通
PayPal支付后,可能会遇到VIP权益未及时开通的情况,请您耐心等待,或者联系百科微信客服:mbalib888。
温馨提示:当无法进去支付页面时,可刷新后重试或更换浏览器
开通百科会员即视为同意《MBA智库·百科会员服务规则》

支付成功

全球专业中文经管百科,由121,994位网友共同编写而成,共计436,072个条目

ARMA模型

用手机看条目

出自 MBA智库百科(https://wiki.mbalib.com/)

(重定向自ARMA)

ARMA模型(Auto-Regressive and Moving Average Model)

目录

[隐藏]

ARMA模型概述

  ARMA 模型(Auto-Regressive and Moving Average Model)是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础“混合”构成。在市场研究中常用于长期追踪资料的研究,如:Panel研究中,用于消费行为模式变迁研究;在零售研究中,用于具有季节变动特征的销售量市场规模的预测等。

ARMA模型三种基本形式[1]

  1.自回归模型(AR:Auto-regressive);

  自回归模型AR(p):如果时间序列yt满足y_t=\phi_1 y_{t-1}+\ldots+\phi y_{t-p}+\epsilon_t

  其中εt是独立同分布的随机变量序列,且满足:

  Et) = 0  Var(\epsilon_t)=\sigma^2_\epsilon>0

  则称时间序列为yt服从p阶的自回归模型。或者记为φ(B)yt = εt

  自回归模型的平稳条件:

  滞后算子多项式\phi (B)=1-\phi_1(B)+\ldots+\phi_p B_p的根均在单位圆外,即φ(B) = 0的根大于1。

  2.移动平均模型(MA:Moving-Average)

  移动平均模型MA(q):如果时间序列yt满足y_t=\epsilon_t-\theta_1\epsilon_{t-1}-\ldots-\theta_q\epsilon_{t-q}

  则称时间序列为yt服从q阶移动平均模型;

  移动平均模型平稳条件:任何条件下都平稳。

  3.混合模型(ARMA:Auto-regressive Moving-Average)

  ARMA(p,q)模型:如果时间序列yt满足:y_t=\theta_1y_{t-1}+\ldots+\theta_p y_{t-p}+\epsilon_t-\theta_1\epsilon_{t-1}-\theta_q\epsilon_{t-q}

  则称时间序列为yt服从(p,q)阶自回归滑动平均混合模型。或者记为φ(B)yt = θ(Bt

  特殊情况:q=0,模型即为AR(p),p=0,模型即为MA(q),

ARMA模型的基本原理

  将预测指标随时间推移而形成的数据序列看作是一个随机序列,这组随机变量所具有的依存关系体现着原始数据在时间上的延续性。一方面,影响因素的影响,另一方面,又有自身变动规律,假定影响因素为x1,x2,…,xk,由回归分析

  Y=\beta_0+\beta_1 x_1+\beta_2 x_2+\ldots+\beta_k x_k+e

  其中Y是预测对象的观测值, e为误差。作为预测对象Yt受到自身变化的影响,其规律可由下式体现,

  Y_t=\beta_0+\beta_1 x_{t-1}+\beta_2 x_{t-2}+\ldots+\beta_p x_{t-p}+e_t

  误差项在不同时期具有依存关系,由下式表示,

  e_t=\alpha_0+\alpha_1 e_{t-1}+\alpha_2 e_{t-2}+\ldots+\alpha_q e_{t-q}+\mu_t

  由此,获得ARMA模型表达式:

  Y_t=\beta_0+\beta_1 x_{t_1}+\beta_2 x_{t-2}+\ldots+\beta_p x_{t-q}+\alpha_0+\alpha_1 e_{t-1}\alpha_2 e_{t-2}+\ldots+\alpha_q e_{t-q}+\mu_t

参考文献

  1. 徐国祥,马俊玲.《统计预测和决策》学习指导与习题[M].上海财经大学出版社.ISBN:7-81098-492-6.2005
本条目对我有帮助285
MBA智库APP

扫一扫,下载MBA智库APP

分享到:
  如果您认为本条目还有待完善,需要补充新内容或修改错误内容,请编辑条目投诉举报

本条目由以下用户参与贡献

Angle Roh,funwmy,Zfj3000,Dan,Guaigui,Yixi,Lin.

评论(共7条)

提示:评论内容为网友针对条目"ARMA模型"展开的讨论,与本站观点立场无关。
58.213.113.* 在 2007年12月4日 21:00 发表

在实际预测时,ut如何给出呢?

回复评论
124.234.121.* 在 2011年5月3日 21:46 发表

请问pq的值应如何获得呢

回复评论
Yixi (Talk | 贡献) 在 2011年5月4日 15:34 发表

124.234.121.* 在 2011年5月3日 21:46 发表

请问pq的值应如何获得呢

内容已修正,附上参考文献,希望对您有帮助!

回复评论
218.69.250.* 在 2011年12月17日 23:22 发表

124.234.121.* 在 2011年5月3日 21:46 发表

请问pq的值应如何获得呢

可利用相关图和偏自相关图,也可利用AIC准则或BIC准则精确得到p和q的值。

回复评论
61.150.43.* 在 2013年12月28日 16:28 发表

有用,thank you.

回复评论
126.247.96.* 在 2016年5月25日 09:04 发表

ARMA的式子后半部分少了省略号吧

回复评论
210.26.113.* 在 2019年2月25日 15:26 发表

怎么使用AIC准则

回复评论

发表评论请文明上网,理性发言并遵守有关规定。

打开APP

以上内容根据网友推荐自动排序生成

官方社群
下载APP
告MBA智库百科用户的一封信
亲爱的MBA智库百科用户: 过去的17年,百科频道一直以免费公益的形式为大家提供知识服务,这是我们团队的荣幸和骄傲。 然而,在目前越来越严峻的经营挑战下,单纯依靠不断增加广告位来维持网站运营支出,必然会越来越影响您的使用体验,这也与我们的初衷背道而驰。 因此,经过审慎地考虑,我们决定推出VIP会员收费制度,以便为您提供更好的服务和更优质的内容。 MBA智库百科VIP会员(9.9元 / 年,点击开通),您的权益将包括: 1、无广告阅读; 2、免验证复制。 当然,更重要的是长期以来您对百科频道的支持。诚邀您加入MBA智库百科VIP会员,共渡难关,共同见证彼此的成长和进步!
MBA智库百科项目组
2023年8月10日

闽公网安备 35020302032707号

添加收藏

    新建收藏夹

    编辑收藏夹

    20