全球专业中文经管百科,由121,994位网友共同编写而成,共计436,047个条目

等可能性决策法

用手机看条目

出自 MBA智库百科(https://wiki.mbalib.com/)

等可能性决策法也称等可能性法拉普拉斯决策准则拉普拉斯方法

目录

等可能性决策法概述

  等可能性决策是当决策人在决策过程中,不能肯定哪种状态容易出现,哪种状态不容易出现时,可以一视同仁,认为各种状态出现的可能性是相等的。如果有 n个自然状态,那么每个自然状态出现的概率即为\frac{1}{n},然后按收益最大的或损失最小的期望值(或矩阵法)进行决策。这个想法是法国数学家皮埃尔-西蒙·拉普拉斯(Pierre Simon Laplace;1749~1827)首先提出的,所以又叫作拉普拉斯方法

等可能性决策法的基本原理

  等可能性决策法是当存在两种或两种以上的可行方案时,假定每一种方案遇到各种自然状态的可能性是相等的,然后求出各种方案的损益期望值,以此作为依据,进行决策;这种决策方法带有一定的主观性。

等可能性决策法的应用领域

  等可能性决策法的主要应用领域:

  等可能性决策法主要应用于生产、销售、建筑施工和交通运输等领域,在决策者无法预测各种自然状态出现的概率时,认为各种状态出现的概率相等,但每种状态下各方案的损益值是可以预测的,在这种情况下,可以使用等可能性决策法。

等可能性决策法的操作步骤

  等可能性决策法的基本操作步骤

  以\frac{1}{n}为各状态出现的概率,求出方案的期望值 E(A1)如下:

  E(A_1)=\frac{1}{n}a_{11}+\frac{1}{n}a_{12}+\ldots+\frac{1}{n}a_{1n}

  E(A_2)=\frac{1}{n}a_{21}+\frac{1}{n}a_{22}+\ldots+\frac{1}{n}a_{2n}

  \ldots\ldots

  E(A_m)=\frac{1}{n}a_{m1}+\frac{1}{n}a_{m2}+\ldots+\frac{1}{n}a_{mn}

  然后取max{E(A1)}(i=1,2,…,m)为决策者的目标值

  若有两个以上方案的期望值相等,则再比较这些方案的D(A1),D(A1) = E(A1) − min(aij),取 D(A1)值最小的那一个方案。

等可能性决策法的应用领域

  等可能性决策法的主要应用领域:

  等可能性决策法主要应用于生产销售、建筑施工和交通运输等领域,在决策者无法预测各种自然状态出现的概率时,认为各种状态出现的概率相等,但每种状态下各方案的损益值是可以预测的,在这种情况下,可以使用等可能性决策法。4.实用案例今有五个行动方案 A1,A2,A5,四个自然状态%1,%2,%3,%4(它们出现的概率不知道),其相应的效益值列于下表:

  等可能性决策法

  决策表如下:E(A_1)=4\times\frac{1}{4}+5\times\frac{1}{4}+6\times\frac{1}{4}+7\times\frac{1}{4}=5.50

  E(A_2)=2\times\frac{1}{4}+4\times\frac{1}{4}+6\times\frac{1}{4}+9\times\frac{1}{4}=5.25

  E(A_3)=5\times\frac{1}{4}+7\times\frac{1}{4}+3\times\frac{1}{4}+5\times\frac{1}{4}=5.00

  E(A_4)=3\times\frac{1}{4}+5\times\frac{1}{4}+6\times\frac{1}{4}+8\times\frac{1}{4}=5.50

  E(A_5)=3\times\frac{1}{4}+5\times\frac{1}{4}+5\times\frac{1}{4}+5\times\frac{1}{4}=4.50

  等可能性决策法

  因为 E(A) = E(A4),所以要比较 D(A1)D(A4)的大小。

  D(A1) = E(A1) − min(aij) = 5.50 − 4 = 1.50

  D(A4) = E(A4) − min(a4j) = 5.50 − 3 = 2.50

  因为D(A1) < D(A4),所以选取方案 A1

本条目对我有帮助42
MBA智库APP

扫一扫,下载MBA智库APP

分享到:
  如果您认为本条目还有待完善,需要补充新内容或修改错误内容,请编辑条目投诉举报

本条目由以下用户参与贡献

Angle Roh,Zfj3000,Caijing,鲈鱼,Yixi,赵先生.

评论(共1条)

提示:评论内容为网友针对条目"等可能性决策法"展开的讨论,与本站观点立场无关。
81.172.68.* 在 2014年10月29日 06:17 发表

超有用,谢谢!例子很清晰!

回复评论

发表评论请文明上网,理性发言并遵守有关规定。

打开APP

以上内容根据网友推荐自动排序生成

官方社群
下载APP

闽公网安备 35020302032707号