全球专业中文经管百科,由121,994位网友共同编写而成,共计436,034个条目

秃子悖论

用手机看条目

出自 MBA智库百科(https://wiki.mbalib.com/)

(重定向自秃头悖论)

目录

什么是秃子悖论

  秃子悖论认为:如果一个有X根头发的人被称为秃子,那么,有X + 1根头发的人也是秃子。所以,(X + 1) + 1根头发的还是秃子。以此类推,无论你有几根头发都是秃子。

秃子悖论分析[1]

  显然,这个结论是错的。当一个结论是错的时候,其推理或是至少一个前提是错的。那么,错在哪里?

  分析如下:

  这种错误其实并不容易被清楚的点出来。因为,这是一种结构误植所造成的错误。简单的说,一个词汇的习惯用法被不当的放在另一个不同的结构中。在我们的日常生活中,我们判定一个人是秃子与否不是用确定的头发数量衡量,而是一种大致上的感觉。所以,秃子这个概念的结构不同于那种可以被清楚量化的概念的结构。所以,当我们要用一根一根去计较一个人是否是秃子时,就会产生问题。你可以责怪秃子的概念不够科学,你也可以责怪科学不适用于这类的概念。

  并不是所有的概念都可以被科学清楚的定义,日常生活概念的结构不同于科学概念的结构。但是这类问题不太容易被清楚点出来,因为我们很少去注意所谓的概念结构。

秃子悖论的解决[2]

  关于秃子悖论,有人说,我们可以一般人平均具有的5000根头发为界,规定以下为秃子,以上为不秃。如果这样规定,那么,4999根算不算秃?有5000 根头发的她或他,在梳妆打扮时,梳落了一根,是否当即成为一名“秃子”呢?显然太荒唐!究竟如何解决呢?

  模糊数学即模糊集合论,是美国控制论专家扎德((Lotfi A. Zadeh))于1965年创立的,其关键概念是“隶属度”,即一个元素隶属于一个集合的程度。数学家们规定,当一个元素完全属于一个集合时,隶属度为 1,反之为0;当一个元素在某种程度上属于一个集合时,它的隶属度为0~1之间的某个值(这种取值范围类似概率)。那么,对于秃头悖论,我们可以约定,稀稀落落的500根头发以下者为完全秃头,它对于{秃子}这个集合的隶属度为1,而像孟某这样5000根以上的头发茂密者为完全不秃头,他对于{秃子}集合的隶属度为0。这样,501-4999根头发者就在某种程度上属于{秃子}集合。如501根者,隶属度为0.998,而4999根者,隶属度为 0.002。这就是说,501~49999根者对于{秃子}集合是一种“既属于又不属于”的状态。这样,应用模糊数学,我们很好地解决了秃子悖论。

参考文献

  1. 冀剑制.秃子悖论
  2. 孟海泉.哲学悖论趣谈(下)

相关条目

本条目对我有帮助47
MBA智库APP

扫一扫,下载MBA智库APP

分享到:
  如果您认为本条目还有待完善,需要补充新内容或修改错误内容,请编辑条目投诉举报

本条目由以下用户参与贡献

Cabbage,Yixi.

评论(共7条)

提示:评论内容为网友针对条目"秃子悖论"展开的讨论,与本站观点立场无关。
112.96.169.* 在 2014年8月11日 17:33 发表

很受启发

回复评论
jiang (Talk | 贡献) 在 2015年11月16日 23:16 发表

表示不懂。。

回复评论
218.95.17.* 在 2015年11月19日 22:49 发表

对于这个悖论相当感兴趣,但表示看不懂。。。

回复评论
121.9.199.* 在 2017年3月16日 23:30 发表

这个和谷堆悖论是一个意思

回复评论
Jing. (Talk | 贡献) 在 2019年3月12日 15:32 发表

杠精理论差不多

回复评论
M id 207f050e28a7bfac86adea703b7e52c9 (Talk | 贡献) 在 2019年3月12日 20:03 发表

本身从秃子头上找头发这个问题就有瑕疵吧。

回复评论
222.222.150.* 在 2019年12月28日 14:17 发表

没有,500=1 5000=0

回复评论

发表评论请文明上网,理性发言并遵守有关规定。

打开APP

以上内容根据网友推荐自动排序生成

官方社群
下载APP

闽公网安备 35020302032707号