全球专业中文经管百科,由121,994位网友共同编写而成,共计436,047个条目

无偏博弈

用手机看条目

出自 MBA智库百科(https://wiki.mbalib.com/)

目录

无偏博弈概念[1]

  在组合博弈论里,无偏博弈是一类任意局势对于游戏双方都是平等的回合制双人游戏。这里平等的意思是所有可行的走法仅仅依赖于当前的局势,而与现在正要行动的是那一方无关。换句话说,两个游戏者除了先后手之外毫无区别。

无偏博弈的条件

  它们还要满足一些组合游戏的基本条件:

  • 完全信息,所有游戏者都能看到整个局势。这排除了类似桥牌一类的游戏。
  • 无随机行动。所有行动都确定性地将目前局势转变到下一个局势。
  • 在有限步行动之后按照规则游戏必将终止,此时有唯一的一方成为赢家。

  即使常见的游戏如象棋、围棋、五子棋等能符合以上三条规定(可能需要附加一些防止无限循环的规则),它们都不是无偏博弈,因为它们的棋子都有颜色,双方的走法因而要造成局势的不同变化。但是如果定义五子棋的一个变种:双方都采用同样颜色的棋子,先连成5子一线算胜利,那么这个变种是无偏博弈。

  根据斯普莱格-格隆第定理,每个无偏博弈的特定局势都对应着一个尼姆数。这一定理是对无偏博弈进行分析的主要工具。

参考文献

  1. 谈祥伯译.稳操胜券.上海世纪出版集团 上海教育出版社,2003年.ISBN 7-5320-9136-8/O·0013
本条目对我有帮助2
MBA智库APP

扫一扫,下载MBA智库APP

分享到:
  如果您认为本条目还有待完善,需要补充新内容或修改错误内容,请编辑条目投诉举报

本条目由以下用户参与贡献

Cabbage,Dan.

评论(共0条)

提示:评论内容为网友针对条目"无偏博弈"展开的讨论,与本站观点立场无关。

发表评论请文明上网,理性发言并遵守有关规定。

打开APP

以上内容根据网友推荐自动排序生成

官方社群
下载APP

闽公网安备 35020302032707号