大数据思维
出自 MBA智库百科(https://wiki.mbalib.com/)
大数据思维包括全样思维、容错思维和相关思维。
第一,大数据的全样思维
“大数据”与“小数据”的根本区别在于大数据采用全样思维方式,小数据强调抽样。抽样是数据采集、数据存储、数据分析、数据呈现技术达不到实际要求,或成本远超过预期的情况下的权宜之计。
随着技术的发展,在过去不可能获取全样数据,不可能存储和分析全样数据的情况都将一去不复返。大数据年代是全样的年代,抽样的场景将有利于小,最终消失在历史长河中。
第二,大数据的容错思维
在小数据年代,我们习惯了抽样。由于抽样从理论上讲结论就是不稳定的。一般来说,全样的样本数量比抽样样本数量的很多倍,因此抽样的一丁点错误,就容易导致结论的“失之毫厘谬以千里”。为保证抽样得出的结论相对靠谱,人们对抽样的数据精益求精,容不得半点差错。
大数据年代,因为我们采集了全样数据,而不是一部分数据,数据中的异常、纰漏、疏忽、错误都是数据的实际情况,我们没有必要进行任何清晰,其结果是最接近客观事实的。
第三,大数据的相关思维
在大数据年代,我们不追求抽样,而追求全样。当全部数据都加入分析的时候,由于只要有一个反例,因果关系就不成立,因此在大数据时代,因果关系变得几乎不可能。而另一种关系就进入大数据专家的眼里:相关关系。
比如说很多男人去超市买了啤酒后会顺便买纸尿裤,但不是买啤酒就一定买纸尿裤。因此,啤酒喝纸尿裤的关系不能算因果关系,而只能是一种相关关系。同样,女孩子裙子的长短与经济热度、摩天大厦与经济危机的关系都是一种相关关系,不是因果关系。