全球专业中文经管百科,由121,994位网友共同编写而成,共计436,012个条目

K最近邻分类算法

用手机看条目

出自 MBA智库百科(https://wiki.mbalib.com/)

(重定向自KNN)

K最近邻分类算法(K-NearestNeighbor Classification Algorithm)

目录

什么是K最近邻分类算法

  K最近邻(KNN,K-NearestNeighbor)分类算法是指数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是K个最近的邻居的意思,说的是每个样本都可以用它最接近的K个邻居来代表。

  KNN算法的核心思想是如果一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 KNN方法在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。

  KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的K个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。

K最近邻分类算法的算法流程

  1. 准备数据,对数据进行预处理。

  2. 选用合适的数据结构存储训练数据和测试元组。

  3. 设定参数,如K。

  4.维护一个大小为K的的按距离由大到小的优先级队列,用于存储最近邻训练元组。随机从训练元组中选取K个元组作为初始的最近邻元组,分别计算测试元组到这K个元组的距离,将训练元组标号和距离存入优先级队列。

  5. 遍历训练元组集,计算当前训练元组与测试元组的距离,将所得距离L与优先级队列中的最大距离Lmax。

  6. 进行比较。若L>=Lmax,则舍弃该元组,遍历下一个元组。若L<Lmax,删除优先级队列中最大距离的元组,将当前训练元组存入优先级队列。

  7. 遍历完毕,计算优先级队列中K个元组的多数类,并将其作为测试元组的类别。

  8. 测试元组集测试完毕后计算误差率,继续设定不同的K值重新进行训练,最后取误差率最小的K值。

K最近邻分类算法的优缺点

  优点

  1.简单,易于理解,易于实现,无需估计参数,无需训练;

  2. 适合对稀有事件进行分类;

  3.特别适合于多分类问题(multi-modal,对象具有多个类别标签), KNN比SVM的表现要好。

  缺点

  该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。

  该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。

  可理解性差,无法给出像决策树那样的规则。

K最近邻分类算法的改进策略

  KNN算法因其提出时间较早,随着其他技术的不断更新和完善,KNN算法的诸多不足之处也逐渐显露,因此许多KNN算法的改进算法也应运而生。

  针对以上算法的不足,算法的改进方向主要分成了分类效率和分类效果两方面。

  分类效率:事先对样本属性进行约简,删除对分类结果影响较小的属性,快速的得出待分类样本的类别。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。

  分类效果:采用权值的方法(和该样本距离小的邻居权值大)来改进,Han等人于2002年尝试利用贪心法,针对文件分类实做可调整权重的K最近邻居法WAKNN (weighted adjusted K nearest neighbor),以促进分类效果;而Li等人于2004年提出由于不同分类的文件本身有数量上有差异,因此也应该依照训练集合中各种分类的文件数量,选取不同数目的最近邻居,来参与分类。

K最近邻分类算法的案例

  如右图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。也就是说,现在, 我们不知道中间那个绿色的数据是从属于哪一类(蓝色小正方形or红色小三角形),下面,我们就要解决这个问题:给这个绿色的圆分类。

  我们常说,物以类聚,人以群分,判别一个人是一个什么样品质特征的人,常常可以从他/她身边的朋友入手,所谓观其友,而识其人。我们不是要判别上图中那个绿色的圆是属于哪一类数据么,好说,从它的邻居下手。但一次性看多少个邻居呢?从上图中,你还能看到:

  如果K=3,绿色圆点的最近的3个邻居是2个红色小三角形和1个蓝色小正方形,少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。

  如果K=5,绿色圆点的最近的5个邻居是2个红色三角形和3个蓝色的正方形,还是少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于蓝色的正方形一类。

  于此我们看到,当无法判定当前待分类点是从属于已知分类中的哪一类时,我们可以依据统计学的理论看它所处的位置特征,衡量它周围邻居的权重,而把它归为(或分配)到权重更大的那一类。这就是K近邻算法的核心思想。

本条目对我有帮助22
MBA智库APP

扫一扫,下载MBA智库APP

分享到:
  如果您认为本条目还有待完善,需要补充新内容或修改错误内容,请编辑条目投诉举报

本条目由以下用户参与贡献

林晓辰.

评论(共0条)

提示:评论内容为网友针对条目"K最近邻分类算法"展开的讨论,与本站观点立场无关。

发表评论请文明上网,理性发言并遵守有关规定。

打开APP

以上内容根据网友推荐自动排序生成

下载APP

闽公网安备 35020302032707号