二次曲线法
出自 MBA智库百科(https://wiki.mbalib.com/)
目录 |
二次曲线法是研究时间序列观察值数据随时间变动呈现一种由高到低再到高(或由低到高再到低)的趋势变化的曲线外推预测方法.由于时间序列观察值的散点图呈现抛物线形状,故也称之为二次抛物线预测模型。
假设曲线趋势外推预测模型为:
式中:第t期某变量的预测值(因变量);xt——时间变量(自变量),。
1) 当时,,即为线性趋势外推预测法的模型;
2) 当时,,即为二次曲线外推预测法的模型。
二次曲线法的计算[1]
用最小二乘法确定待定参数
1) 参数的确定
设yt表示第t期的时间序列的观察值;——第t期的预测值;et——第t期的离差;Q——离差平方和。由二次曲线外推预测法的模型,有
(3.2.2)
与拟合直线外推法相同的原理,对式(3.2.2)求并分别令其等于0,则可得关于的方程组
(3.2.3)
由于xt表示时间序列的编号,如同拟合直线方程法一样,当时间序列观察期的项数为奇数时,令其中间项的编号为0,则
式(3.2.3)可简化为:
(3.2.4)
解上面的方程组可得:
(3.2.5)
2) 预测步骤
例3.4某公司1995~2003年的商品销售收入如表3.4所示,试预测该公司2004年的销售收入。
年份 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
销售收入 | 545 | 641 | 764 | 923 | 1107 | 1322 | 1568 | 1836 | 2140 |
解:
①绘制散点图如图3.3所示。
②根据观察值的散点图的变化趋势确定其属于二次曲线变化趋势后,列表计算二次曲线待定参数所需的数据。计算结果如表3.5所示。
③计算待定参数,建立预测模型,并计算预测值。
利用表3.5中的有关数据,代入式(3.2.5)中,计算得:
该例的二次曲线的趋势外推预测模型为:
(3.2.6)
当x_t=5时,代入上式得
(万元)
年份 | xt | 销售额yt | xtyt | |||||
1995 | -4 | 545 | 16 | 256 | 2180 | 8720 | 543.89 | 1.23 |
1996 | -3 | 641 | 9 | 81 | -1923 | 5769 | 640.73 | 0.07 |
1997 | -2 | 764 | 4 | 16 | -1528 | 3056 | 766.91 | 8.47 |
1998 | -1 | 923 | 1 | 1 | -923 | 923 | 922.43 | 0.32 |
1999 | 0 | 1107 | 0 | 0 | 0 | 0 | 1107.29 | 0.08 |
2000 | 1 | 1322 | 1 | 1 | 1322 | 1322 | 1321.49 | 0.26 |
2001 | 2 | 1568 | 4 | 16 | 3136 | 6272 | 1565.03 | 8.82 |
2002 | 3 | 1836 | 9 | 81 | 5508 | 16524 | 1837.91 | 3.65 |
2003 | 4 | 2140 | 16 | 256 | 8560 | 34240 | 2140.13 | 0.02 |
0 | 10846 | 60 | 708 | 11972 | 76826 | 22.92 |
(1)二次曲线方程的二阶差分是一个常数。
(2)二次曲线法适用于时间序列数据呈抛物线形状上升或下降,且曲线仅有一个极点(极大值或极小值)的情况下使用。
(3)对于更高次的曲线方程,分析思路、求解未知参数的方法与此类似。
- ↑ 第3章 趋势外推预测法