全球专业中文经管百科,由121,994位网友共同编写而成,共计436,017个条目

阿基里斯悖论

用手机看条目

出自 MBA智库百科(https://wiki.mbalib.com/)

目录

什么是阿基里斯悖论

  公元前5世纪,芝诺为了捍卫他老师巴门尼德的学说,用他关于无限、连续及部分和等知识,提出了著名的运动悖论和多悖论,以表明运动和多是不可能的。他的结论在常人看来当然很荒谬,但他居然给出了乍看起来颇令人信服的论证,故人们常常称这些论证构成了悖论或佯谬。他的悖论在亚里士多德的《物理学》里被概括为以下四个:二分法、阿喀琉斯、飞矢不动、运动场。其中最著名的是阿基里斯和飞矢不动

  悖论:若慢跑者在快跑者前一段,则快跑者永远赶不上慢跑者,因为追赶者必须首先跑到被追者的出发点,而当他到达被追者的出发点,慢跑者又向前了一段,又有新的出发点在等着它,有无限个这样的出发点。

  阿基里斯是希腊传说中跑得最快的人。一天他正在散步,忽然发现在他前面100米远的地方有一只大乌龟正在慢慢地向前爬。 乌龟说:“阿基里斯! 谁说你跑得最快?你连我都追不上!”阿基里斯回答说:“胡说!我的速度比你快何止百倍!就算刚好是你的10倍,我也马上就可以超过你!”乌龟说:“就照你说的,我们来试一试吧!当你跑到我现在这个地方,我已经向前爬了10米。当你再向前跑过10米时,我又爬到前面去了。

  每次你追到我刚刚经过的地方,我都又向前爬了一段距离。你只能离我越来越近,却永远也追不上我!”阿基里斯说:“哎呀!我明明知道能追上你,可你说的好像也有道理,这是怎么回事呢? ”这个有趣的悖论,是公元前5世纪古希腊哲学家芝诺提出来的。在2 000多年的时间里,它使数学家和哲学家伤透了脑筋。先看下面的图:

  Image:阿基里斯悖论.jpg

  阿基里斯在A点时,乌龟在B点;他追到B,它爬到C;他追到C,它爬到D,……我们看到,阿基里斯离乌龟越来越近,也就是,AB,BC,CD,……这些线段越来越短,每个都只有前一个的1/10,但是每一个线段的长度都不会是0,这就是说,当阿基里斯按上面的过程去追乌龟时,在任何有限次之内他都追不上乌龟。 那么,阿基里斯真的追不上乌龟了吗? 当然不是。所以会产生上述困难,是因为忽视了一个十分重要的因素:由于那些线段越来越短,阿基里斯跑完那些线段所用的时间也越来越短,下一次只相当于上一次的1/10。芝诺悖论的关键是使用了两种不同的时间测度。原来,我们用来测量时间的任何一种“钟”都是依靠一种周期性的过程作标准的。如太阳每天的东升西落,月亮的圆缺变化,一年四季的推移,钟摆的运动等等。人们正是利用它们循环或重复的次数作为时间的测量标准的。芝诺悖论中除了普通的钟以外,还有另一种很特别的“钟”,就是用阿基里斯每次到达上次乌龟到达的位置作为一个循环。

  用这种重复性过程测得的时间称为“芝诺时”。例如,当阿基里斯在第n次到达乌龟在第n次的起始点时,芝诺时记为n,这样,在芝诺时为有限的时刻,阿基里斯总是落在乌龟后面。但是在我们的钟表上,假如阿基里斯跑完AB(即100米)用了1分钟,那么他跑完BC只要6秒钟,跑完CD只需 0.6秒,实际上,他只需要1 又1/9分钟就可以追上乌龟了。

  因此,芝诺悖论的产生原因,是在于“芝诺时”不可能度量阿基里斯追上乌龟后的现象。在芝诺时达到无限后,正常计时仍可以进行,只不过芝诺的“钟”已经无法度量它们了。 这个悖论实际上是反映时空并不是无限可分的,运动也不是连续的。

相关条目

本条目对我有帮助36
MBA智库APP

扫一扫,下载MBA智库APP

分享到:
  如果您认为本条目还有待完善,需要补充新内容或修改错误内容,请编辑条目投诉举报

本条目由以下用户参与贡献

Dan,Vulture.

评论(共8条)

提示:评论内容为网友针对条目"阿基里斯悖论"展开的讨论,与本站观点立场无关。
Youyuesen (Talk | 贡献) 在 2010年4月21日 18:55 发表

很像一个关于绳子的故事,先取其半,其半再取其半,循环复之,无穷竭也。

回复评论
219.128.48.* 在 2010年11月22日 16:27 发表

这是个伟大的思想实验~~ 直接用思想实验证明了,这个世界不可能存在连续的时空

回复评论
122.224.175.* 在 2011年1月26日 14:23 发表

我们无法感受出时间的无限分割

回复评论
123.103.8.* 在 2015年10月12日 08:41 发表

太深奥,我不懂!

回复评论
121.32.198.* 在 2016年12月25日 03:17 发表

文字游戏,“赶上”和“超过”

赶上意思是两人处于一条直线,阿格琉斯必须踩着乌龟走过的点才算,像半绳故事一样阿格琉斯最后的速度会无限接近乌龟的速度,想要赶上也需要无限期

超过是 两人是两条平行线,不设置参照点,两人全力奔跑即可

回复评论
Zarua (Talk | 贡献) 在 2017年4月16日 11:35 发表

无法理解和接受的理论!

回复评论
M id 66dc7fa23678766e89ebc5446a113115 (Talk | 贡献) 在 2019年5月23日 12:38 发表

十分之一的距离不一样,单从逻辑说是没什么问题的

回复评论
14.30.166.* 在 2021年4月3日 16:19 发表

悖论

回复评论

发表评论请文明上网,理性发言并遵守有关规定。

打开APP

以上内容根据网友推荐自动排序生成

下载APP

闽公网安备 35020302032707号