全球专业中文经管百科,由121,994位网友共同编写而成,共计436,057个条目

海森堡不确定性原理

用手机看条目

出自 MBA智库百科(https://wiki.mbalib.com/)

海森堡不确定性原理(Heinsberg's Uncertainty Principle)

目录

海森堡不确定性原理简介

  海森堡不确定性原理(Heinsberg's Uncertainty Principle)有时也被译成海森堡测不准原理。是指在一个量子力学系统中,一个粒子的位置和它的动量不可被同时确定。位置的不确定性\Delta x\,\! 和动量的不确定性\Delta p\,\! 是不可避免的:

\Delta x \Delta p \ge \frac{\hbar}{2}\,\!

其中\hbar\,\! 是约化普朗克常数。

类似的不确定性也存在于能量和时间,角动量和角度等许多物理量之间:

\Delta A \Delta B \ge \left|\frac{\langle [A,B] \rangle}{2i}\right|\,\!

换句话说,A\,\! 的不确定性与B\,\! 的不确定性的乘积至少是A\,\!B\,\! 对易算符的期望值除以2i\,\! 所得到的除商的绝对值。

不确定性也是一种波的特性。在经典物理中波也有不确定性。比如波的频率和波到达的时间之间就有不确定性。要测量频率,就要等几个波峰的到达,但这样一来波到达的时间就没法被精确地测量了。

海森堡不确定性原理的理论背景

  海森伯在创立矩阵力学时,对形象化的图象采取否定态度。但他在表述中仍然需要使用“坐标”、“速度”之类的词汇,当然这些词汇已经不再等同于经典理论中的那些词汇。可是,究竟应该怎样理解这些词汇新的物理意义呢?海森伯抓住云室实验中观察电子径迹的问题进行思考。他试图用矩阵力学为电子径迹作出数学表述,可是没有成功。这使海森伯陷入困境。他反复考虑,意识到关键在于电子轨道的提法本身有问题。人们看到的径迹并不是电子的真正轨道,而是水滴串形成的雾迹,水滴远比电子大,所以人们也许只能观察到一系列电子的不确定的位置,而不是电子的准确轨道。因此,在量子力学中,一个电子只能以一定的不确定性处于某一位置,同时也只能以一定的不确定性具有某一速度。可以把这些不确定性限制在最小的范围内,但不能等于零。这就是海森伯对不确定性最初的思考。据海森伯晚年回忆,爱因斯坦1926年的一次谈话启发了他。爱因斯坦和海森伯讨论可不可以考虑电子轨道时,曾质问过海森伯:“难道说你是认真相信只有可观察量才应当进入物理理论吗?”对此海森伯答复说:“你处理相对论不正是这样的吗?你曾强调过绝对时间是不许可的,仅仅是因为绝对时间是不能被观察的。”爱因斯坦承认这一点,但是又说:“一个人把实际观察到的东西记在心里,会有启发性帮助的……在原则上试图单靠可观察量来建立理论,那是完全错误的。实际上恰恰相反,是理论决定我们能够观察到的东西……只有理论,即只有关于自然规律的知识,才能使我们从感觉印象推论出基本现象。”

  海森伯在1927年的论文一开头就说:“如果谁想要阐明‘一个物体的位置’(例如一个电子的位置)这个短语的意义,那么他就要描述一个能够测量‘电子位置’的实验,否则这个短语就根本没有意义。”海森伯在谈到诸如位置与动量,或能量与时间这样一些正则共轭量的不确定关系时,说:“这种不确定性正是量子力学中出现统计关系的根本原因。”

  海森伯测不准原理是通过一些实验来论证的。设想用一个γ射线显微镜来观察一个电子的坐标,因为γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度△q就越小,所以△q∝λ。但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有△p∝1/λ。经过一番推理计算,海森伯得出:△q△p=h/4π。海森伯写道:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。于是,位置测定得越准确,动量的测定就越不准确,反之亦然。”    海森伯还通过对确定原子磁矩的斯特恩-盖拉赫实验的分析证明,原子穿过偏转所费的时间△T越长,能量测量中的不确定性△E就越小。再加上德布罗意关系λ=h/p,海森伯得到△E△T<h,并且作出结论:“能量的准确测定如何,只有靠相应的对时间的测不准量才能得到。”

  海森伯的测不准原理得到了玻尔的支持,但玻尔不同意他的推理方式,认为他建立测不准关系所用的基本概念有问题。双方发生过激烈的争论。玻尔的观点是测不准关系的基础在于波粒二象性,他说:“这才是问题的核心。”而海森伯说:“我们已经有了一个贯彻一致的数学推理方式,它把观察到的一切告诉了人们。在自然界中没有什么东西是这个数学推理方式不能描述的。”玻尔则说:“完备的物理解释应当绝对地高于数学形式体系。”

  玻尔更着重于从哲学上考虑问题。1927年玻尔作了《量子公设和原子理论的新进展》的演讲,提出著名的互补原理。他指出,在物理理论中,平常大家总是认为可以不必干涉所研究的对象,就可以观测该对象,但从量子理论看来却不可能,因为对原子体系的任何观测,都将涉及所观测的对象在观测过程中已经有所改变,因此不可能有单一的定义,平常所谓的因果性不复存在。对经典理论来说是互相排斥的不同性质,在量子理论中却成了互相补充的一些侧面。波粒二象性正是互补性的一个重要表现。测不准原理和其它量子力学结论也可从这里得到解释。

本条目对我有帮助65
MBA智库APP

扫一扫,下载MBA智库APP

分享到:
  如果您认为本条目还有待完善,需要补充新内容或修改错误内容,请编辑条目投诉举报

本条目由以下用户参与贡献

Zhenzhizhe,Dan,连晓雾.

评论(共0条)

提示:评论内容为网友针对条目"海森堡不确定性原理"展开的讨论,与本站观点立场无关。

发表评论请文明上网,理性发言并遵守有关规定。

打开APP

以上内容根据网友推荐自动排序生成

官方社群
下载APP

闽公网安备 35020302032707号