优选法

用手机看条目

出自 MBA智库百科(https://wiki.mbalib.com/)

优选法(Optimization method)

目录

优选法概述

  优选法,是指研究如何用较少的试验次数,迅速找到最优方案的一种科学方法。例如:在现代体育实践的科学实验中,怎样选取最合适的配方、配比;寻找最好的操作和工艺条件;找出产品的最合理的设计参数,使产品的质量最好,产量最多,或在一定条件下使成本最低,消耗原料最少,生产周期最短等。把这种最合适、最好、最合理的方案,一般总称为最优;把选取最合适的配方、配比,寻找最好的操作和工艺条件,给出产品最合理的设计参数,叫做优选。也就是根据问题的性质在一定条件下选取最优方案。最简单的最优化问题是极值问题,这样问题用微分学的知识即可解决。

  实际工作中的优选问题 ,即最优化问题,大体上有两类:一类是求函数的极值;另一类是求泛函的极值。如果目标函数有明显的表达式,一般可用微分法、变分法、极大值原理动态规划等分析方法求解(间接选优);如果目标函数的表达式过于复杂或根本没有明显的表达式,则可用数值方法或试验最优化等直接方法求解(直接选优)。

  优选法是尽可能少做试验,尽快地找到生产和科研的最优方案的方法,优选法的应用在我国从70年代初开始,首先由我们数学家华罗庚等推广并大量应用,优选法也叫最优化方法。

优选法的优点

  怎样用较少的试验次数,打出最合适的训练量,这就是优选法所要研究的问题。应用这种方法安排试验,在不增加设备、投资、人力和器材的条件下,可以缩短时间、提高质量,达到增强体质.迅速提高运动成绩的目的。

优选法基本步骤

  1)选定优化判据(试验指标),确定影响因素,优选数据是用来判断优选程度的依据。

  2)优化判据与影响因素直接的关系称为目标函数。

  3)优化计算。优化(选)试验方法一般分为两类:

优选法的分类

  优选法分为单因素方法和多因素方法两类。单因素方法有平分法、0.618法(黄金分割法)、分数法、分批试验法等;多因素方法很多.但在理论上都不完备.主要有降维法爬山法、单纯形调优胜。随机试验法试验设计法等。优选法已在体育领域得到广泛应用。

  1.单因素优选法

   如果在试验时,只考虑一个对目标影响最大的因素,其它因素尽量保持不变,则称为单因素问题。一般步骤:

  (1)首先应估计包含最优点的试验范围,如果用a表示下限,b表示上限,试验范围为[a,b];

  (2)然后将试验结果和因素取值的关系写成数学表达式,不能写出表达式时,就要确定评定结果好坏的方法。

  2.多因素优选法

  多因素问题:首先对各个因素进行分析,找出主要因素,略去次要因素,划“多”为“少”,以利于解决问题。

优选法案例分析

案例一:优选法应用举例[1]

  那么,优选法是怎么操作的呢? 下面,我们举一个例子来说明。

  某保健饮料开发公司在试验配制一种新型饮料时,需要加入某种化学成分K。根据已往的研究经验,估计每100 kg饮料大约可加入K的量在1000~2000 g之间。要研究出其口感、营养、颜色、气味俱佳的饮料,就需要作大量的试验。如果以每10 g作一次试验的语,就要作100次试验,显然这样就要耗费许多人力、物力、财力以及时间。现在,该公司采用“优选法”,用一张有刻度的纸条表示1000~2000 g ,在纸条的l618处划一条线,1618这一点实际上就是这张纸的黄金分割位置即0.618倍;用算式表示为

  1000+(2000—1000)×0.618=1618

  取1618 g化学成分K加入 100 k饮料中做一次试验。然后把纸条对折起来,前一线(1618)落在1382处划线。显然,这两条线对于纸条的中点是对称的。数值1382可以计算出来,即

  1000+(2000—1618)= 1382

  这个算式可以写为:左端点+(右端点—前一点) = 后一点

  再取1382 g化学成分K加入100 kg饮料中,再做一次试验。

  把两次试验的效果进行比较,如果认为1382 g的浓度比较低,则在1 382处把纸条的左边一段剪掉,得图5.U(b)(反之,就在1 618处剪掉右边的一段)。把剩下的纸条再对折一次,再划线,再做实验,并将实验结果与前面的实验效果比较,如此反复进行试验、比较,逐步接近最好的加入量,直到满意为止。

  在使用“优选法”时,要根据以往的研究和经验来确定试验范围,这是非常重要的。当然,有时候最优点可能在试验范围之外,这时可在做过几次试验后,再在剪掉的另一段做一次试验,若试验效果好就必须向该端扩大试验范围。

  早在70年代,由于数学家华罗庚教授的大力宣传和推广优选法,全国各行各业都将优选法运用于生产实践,从而产生了巨大的经济效益。有研究表明,用这种“优选法”做16次试验相当于用“均分法” 2500多次试验所达到的精度。实践证明,在选择合适的生产条件、进行新产品的试制、确保达到产品质量的情况下,“优选法”确实能让我们快速选择最佳方案。

参考文献

  1. 黄金分割与优选法.中国数学课程网

相关条目

本条目对我有帮助62
MBA智库APP

扫一扫,下载MBA智库APP

分享到:
  如果您认为本条目还有待完善,需要补充新内容或修改错误内容,请编辑条目

本条目由以下用户参与贡献

18°@鷺島,Dan,Cabbage,Anson,Fghghg,Yixi.

评论(共13条)

提示:评论内容为网友针对条目"优选法"展开的讨论,与本站观点立场无关。
116.204.235.* 在 2008年7月11日 14:36 发表

很好 good

回复评论
220.181.67.* 在 2008年7月12日 23:14 发表

回复评论
60.219.2.* 在 2009年10月3日 19:46 发表

好个屁,没有实际的应用例子,怎么操作?

回复评论
Anson (Talk | 贡献) 在 2009年10月7日 14:13 发表

补充了个例子

回复评论
113.243.2.* 在 2009年10月23日 12:29 发表

字写错了

回复评论
Angle Roh (Talk | 贡献) 在 2009年10月23日 17:45 发表

113.243.2.* 在 2009年10月23日 12:29 发表

字写错了

MBA智库是可以自由编辑的,当您发现不足之处时,可以进行修改。MBA智库需要您的参与

回复评论
119.166.229.* 在 2009年11月9日 18:25 发表

真不错!!!!!!!!

回复评论
118.255.92.* 在 2010年2月20日 15:25 发表

写论文 没材料啊 好吗? 、

回复评论
60.29.5.* 在 2010年3月22日 22:00 发表

不必遵循死板的格式,要按时代要求进行变革。

回复评论
183.161.226.* 在 2013年8月21日 11:18 发表

如何运用0.618到股票分析上

回复评论
123.151.30.* 在 2013年10月7日 13:16 发表

60.219.2.* 在 2009年10月3日 19:46 发表

好个屁,没有实际的应用例子,怎么操作?

无知呀

回复评论
182.100.57.* 在 2017年1月20日 07:45 发表

优选法比科学发展观早四十多年,更具体更实用,更哲理性,当时环境下不重知识文化但科学家本着忧国忧民的思想,及时自发地创造性的推出优选法,对当时那种艰难环境下发展发挥了重要的作用。

回复评论
115.53.154.* 在 2017年8月8日 10:39 发表

对折后怎么会落在1382线?

回复评论

发表评论请文明上网,理性发言并遵守有关规定。

MBA智库
打开APP

以上内容根据网友推荐自动排序生成